EN S203TA Advanced Three-phase Network Analyzer

General Description

Model S203TA is a complete three-phase network analyzer suited for use with up to 600Vac voltage range, and current range given by the nominal range of the CTs with 5A Output connected.

The instrument provides all the following electrical measurable quantities: Vrms, Irms, Watt, Var, Va, Frequency, Coso and Active Energy. All measurements given above (except frequency) are available both single-phase and three-phase Measurements are read through serial communication both in floating point and

normalised format (except Frequency and Active Energy). The DIP-switches can be set for the analog retransmission of any Vrms, Irms, Watt and

Coso quantity either single phase or three-phase, or any phase chosen (by specific MODBUS registry). The module is also distinguished by:

 Communication configurability through DIP-switch or software. RS485 serial communication with MODBUS-RTU protocol, maximum 32 nodes. · Easy-wiring of power supply and serial bus by means of the bus housed in the DIN rail.

High precision: 0,2 % class.

Protection against ESD discharge up to 4 kV

 Power input insulation: 3750 Vac towards all the other circuits. Insulation between communication and power supply: 1500Vac

Insulation between retransmitted output and power supply: 1500Vac.

- Analog output signal settable in voltage or current.
- Possibility for connection and management by external CTs with 5A output.

 All kind of insertion possible: single phase, Aron (three-phase with 2 CTs), four wires (three-phase with 3 CTs).

Possibility to compensate errors caused by frequency change in places where network frequency is not stable (frequency changes > 30 mHz).

Technical Specifications

recinical opecifications				
Power Supply :	1040 Vdc o 1928 Vac (5	i060 Hz).		
Consumption :	max 2,5 W.			
Communication Ports:	RS485, 1200115200 Bau	d.		
Protocol :	MODBUS-RTU.			
Input				
Voltage Input	Up to 600 Vac, Frequency:	50 o 60 Hz.		
	Rated range : given by INON	IINAL of CT.		
Current Input :	Max Crest Factor :3.			
	Maximum Current :3*INOMI	NAL OF CT.		
	Network Frequency: 50 or 6	60 Hz.		
Class/Base Precision(1) :	Voltmeter: 0,2 %.			
Class/base Frecision .	Amperometer : 0,2 %.			
	Wattmeter: 0,2 %.			
Max Resistance of each CT's	The sum of the resistance of	of the wire going (from CT to		
secondary wire :	load) and back (from load to	CT) < rated burden		
(1): Precisions are given in the following				
	Irms: 0,4-100% I	primary of TA		
SSENECA				
JEINEUA	MI001455-I-E	ENGLISH - 1/16		

Analog	Output
Voltago	Output :

Voltage Output :	010 Vdc, 05 Vdc, Min. load resistance: 2 kΩ.			
Current Output :	020 mA, 420 mA, Max load resistance: 500 Ω.			
Transmission error :	0,1 % (max range).			
Response time (10%90%) :	0,4 s.			
Other Specifications				
Insulation voltage :	3750 Vac between the measurement input and all the other circuits.			
	1500 Vac between power supply and communication. 1500 Vac between power supply and analog output.			
International protection :	IP20.			
Environmental conditions :	Temperature -10+65 °C.			
	Humidity 3090 % non-condensing.			
	Altitude 2000 slm.			
Storage temperature :	-20+85 °C.			
Signalling by LED :	Power supply, Fail, RS485 communication.			
Connections :	Removable 3-way screw terminals, 5.08 mm pitch.			
Box :	Plastic UL 94 VO, grey color.			
Dimensions (L x W x H) :	105 x 89 x 60 mm			
Reference standards :	EN61000-6-4/2002-10 (electromagnetic emission, industrial environment).			
	EN61000-6-2/2006-10 (electromagnetic immunity, industrial environment).			
	EN61010-1/2001 (safety)			
CE	All circuits must be insulated from the other circuits under dangerous voltage with double insulation. The power supply transformer must comply with EN60742:			
	"Insulated transformers and safety transformers".			

Operating logic

The module measures the following electrical quantities: Vrms, Irms, Watt, Var, Va, Frequenza, Coso and Active Energy, and provides the values in the corresponding MODBUS registers.

In three-phase environments, measurements given above corresponding to any phase are available, other than the three-phase value (except the frequency of course).

These measurements are rendered in both floating point and normalised format (except Frequency and Active energy) between 0..+10000 (-10000 ..+10000 for VAR e Coso) Active energy value is stored in memory and when the instrument is switched off, the last value before switching is kept in memory

The module output can transmit, via DIP-switch setting, one of the following quantities: Vrms, Irms, Watt, cos as either a current or voltage value. If the instrument is set for threephase measurements, it transmits automatically the three-phase value of the selected measurement. However, via MODBUS register, the user can choose to transmit the measurement corresponding to any phase: A, B, C.

The user can set through MODBUS the values MIN and MAX of the measurement to transmit corresponding to 0% and 100% of the analog output. For example, if the signal is transmitted as current 4...20 mA and the quantity to transmit is voltage Vrms in the 10...300

V range, (therefore MIN=10, MAX=300), then if Vrms measured is 10V, analog output will be 4mA, while if Vrms=300V output will be 20mA. In the intermediate points the behaviour is linear. The retransmission values saturate at approximately 11 V for voltage output and at 22mA for current output (analog output clamped at 110%).

If network frequency oscillates more than 30 mHz from rated values (50 o 60 Hz). it's possibile to compensate errors on measurements of Power and Energy caused by these variations. This option is selectable via MODBUS register. Vrms and Irms measurements are not influenced by these variations.

When the module is switched on, the appropriate setting coefficients are measured (depending on the choice of 50 or 60 Hz frequency). All the settings made will be automatically loaded when the module is reset.

Electrical Massurament

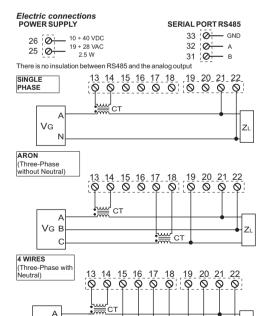
Active Energy

SENECA

Vg B

NC

SENECA

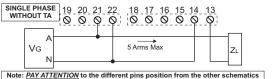

Note:

Electrical Meas					
Electric		Symbols		Calculated	
Quanti		used	Values	Values	used
Root-mean squa		VA VB VC	•		
Mean three pha	se voltage	V		•	(Va+VB+Vc)/3
Root-mean squa	red current	IA IB IC	٠		
Mean three pha	se current	1		•	(IA+IB+Ic)/3
Active power	(phase)	PA PB PC	•		
Total three phase	active power	P		•	Pa+Pb+Pc
Reactive powe	r (phase)	Qa Qb Qc		•	$\sqrt{(S_{A,B,C})^2 - (P_{A,B,C})^2}$
Total three phase re	eactive power	Q		•	Q _A +Q _B +Q _C
Apparent powe	r (phase)	SA SB SC		•	VA,B,C*IA,B,C
Total three phase a		S		•	SA+SB+SC
cosø (pha	COSφA COSφB COSφC		٠	$P_{A,B,C}/S_{A,B,C}$	
Total three-ph	ase cos∳	cos		•	P/S
Frequer	icv	Hz	•		
Active Energy		EA EB EC	•		
Total three-phase a		E		•	EA+EB+Ec
Measurement a	nd retransi	mission ra	nge		
Electrical	Measur		Sele	ctable_retrar	
Quantity	Ran			Range	
Vrms) Vac			mA o 420 mA	
Irms	RY of TA			mA o 420 mA	
Active Power	TA * 600)W		05 V, 020 r	mA o 420 mA	
Reactive Power	TA * 600)VAR		-		
Apparent Power	(0IPRIMARY	TA * 600)VA		-	
Cosø	0	.1	510 V, 2,5	5 V, 1020	mA o 1220 m/
Frequency	407	0 Hz			

MI001455-I-E

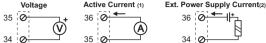
ENGLISH - 3/16

ENGLISH - 4/16


Ст

MI001455-I-E

You can't connect the secondary of any CTs to the Earth.


Pins 14, 16 18 and 22 are internally connected.

∰°СТ

OUTPUT

The module provides an analog output in voltage (0..10 Vdc, 0..5 Vdc) or active and passive current (0..20 mA, 4..20 mA). We recommend using shielded cables for the electric connections

There is no insulation between RS485 and the analog output.

Indications by LED on the frontal panel

Position and Identification of LEDs 27 28 29 30 0 0 0 0 1 1 1 1 1 PWR ERR Tx Rx

 PVV	ĸе	ĸĸ	

Led Indications						
27: PWR LED (GREEN)	Description					
Steady On	Power supply is present					
28: ERR LED (YLW)	Description					
Steady On	Communication error between interna	al peripherals				
Blinking	At least one of the active phases' voltage is less than 40 Vac					
29: TX LED (RED)	Description					
Steady On	Data are being transmitted through the RS485 comm. port					
30: RX LED (RED)	Description					
Steady On	Data are being received through the RS485 comm. port					
 Passive Output already powered to connect to passive inputs. Passive Output not powered to connect to active inputs. 						
SSENECA	MI001455-I-E	ENGLISH - 5/16				

DIP-SWITCH SETTING

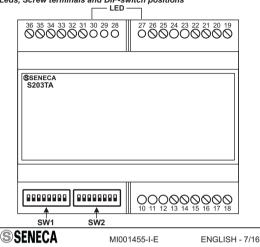
The instrument leaves the factory with all DIP-switches configured in position 0. The setting of the DIP-switches defines the module's communication parameters: address and speed and the following settings The Default Configuration is the following: Baudrate: 38400. Address · 1 Network Frequency : 50 Hz Analog Output : 0..10 V. Environment : Three-phase. Insertion type : 4 wires Transmitted quantity : Mean three-phase voltage

In all the following tables, the indication • corresponds to a DIP-switch set in 1(ON); no indication is provided when the DIP-switch is set in 0 (OFF).

SW1	1	2	
	Γ		9600 Baud
		۲	19200 Baud
	۲		38400 Baud
	۲	٠	57600 Baud

ADDR	ADDRESS							
SW1	3	4	5	6	7	8		
I [Communication Parameters from EEPROM	
1 [۰	Fixed Address: 01	
1 [۲		Fixed Address: 02	
1 [۲	۲	Fixed Address: 03	
[۲			Fixed Address: 04	
	Х	Х	Х	Х	Х	Х	Fixed Address, as from binary representation	
	•		۰	۲	۲	۰	Fixed Address: 63	
NETW	NETWORK FREQUENCY SELECTION (50 o 60 Hz)							

SW2	1				
		Ν	letwork frequency	50 Hz	
	•	Ν	letwork frequency	60 Hz	
		_			
			OUTPUT		
SW2	2	3			
			010 V		
	Γ	٠	05 V		
	•		020 mA		
	•	•	420 mA		
		_			
SELE	EC.	пс	ON OF ENVIRONM	IENT: SINGLE-PHASE OR TH	REE-PHASE
SW2	4				
		Т	hree-phase		
		5	Single-phase		
	_				
S	SE	N	IECA	MI001455-I-E	ENGLISH - 6/16


MI001455-I-E

ELE	ELECTION OF INSERTION TYPE: 4-WIRES OR ARON								
W2	5	i l							
	Г	4 Wires							
	•	1	Aron						
			ON OF QUANTITY RETRANSMITTED						
SW2	6	7							
			Retransmission of Vrms						
		۰	Retransmission of Irms						
	۲		Retransmission of Watt						
	۲	٠	Retransmission of cos						
			-						

Programming For the product's programming and/or configuration tools, consult the website www.seneca.it

During initial programming, the EEPROM (SW1 3.8 in OFF position) default setting values originally programmed as follows can be used: Address=001. SPEED=38400 Baud. PARITY=none. BIT NUMBER=8. STOP BIT=1

Leds, Screw terminals and DIP-switch positions

Serial interface

For detailed information on RS485 serial interface, consult the documentation provided by the website www.seneca.it, in the section Prodotti/Serie Z-PC/MODBUS TUTORIAL.

MODBUS REGISTERS

S203TA has MODBUS 16 bits (words) registers, accessible by RS485 communication. In the next paragraphs, we shall describe the supported MODBUS commands, and the functions of the registers

Supported MODBUS Commands

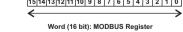
Code	Function	Description					
03		Reading of registers up to 16 words at a time within the same group					
06	Write Single Register	Writing of a word register					
16		Writing of registers up to 16 words at a time within the same group					

Holding Registers

The 16-bit Holding Registers have the following structure:

The Bit notation [x:y] shown in the table indicates all the bits from x to y. For example, Bit [2:1] indicates bit 2 and bit 1, and illustrates the meaning of the various linked combinations of the values of the two bits, Remember that the MODBUS 3, 6 and 16 functions (respectively of multiple reading, single and multiple writing) can be executed on the following registers. Default values are marked with * symbol.

The following indication (only readable or also writable) is probided for every register R: Readable


W. Writeable

This document is property of SENECA srl. Duplication and reprodution are forbidden, if not authorized. Contents of the present documentation refers to products and technologies described in it. All technical data contained in the document may be modified without prior notice Content of this documentation is subject to periodical revision.

MI001455-I-E ENGLISH - 8/16

ENGLISH - 6/16

REGISTER	Description	IND.	R/W	
MACHINE ID	Bit [15:8] contain the module's ID: 41. Bit [7:0] contain the firmware's external revision	40001	R	
CHECK_TA	Kind of CT used: passive CT or compensated CT	40016	R/W	
Bit [15:1]	Not used.			
Bit 0	Select the kind of CT used: 0*: Passive CT with 5A output. 1: Compensated CT, which has no phase error. Precision class of the instrument is given by (CT class)+0,3.			Bit
PHASE_RETR	Select the phase on which the analog output will transmit.	40017	R/W	RE
Bit [15:0]	Select the phase on which the analog output wil transmit the quantity selected: 0. Phase A (default for single-phase). 1: Phase B. 2: Phase C. All other values: Three phase value (default three- phase).			Bit ST, Bit
I_PRIM_FL_MSW	Select the rated current of CTs in floating point (most significative word).	40018	R/W	Bit Bit
Bit [15:0]	Select the rated current of the CTs connected to the instrument in floating point format. This register influences floating point value of: Irms, Active power, Apparent Power, Reactive Power, and Energy (both single and three-phase). It doesn't influence normalised values (0 - 10000) and transmitted output_Default: 1000.0.			Bit Bit Bit
I_PRIM_FL_LSW	Select the rated current of CTs in floating point (least significative word).	40019	R/W	VR
MINOUT_FL_MSW	Value of the quantity to transmit which gives the minimum retransmitted output (floating point format, most significative word).	40020	R/W	VR
Bit [15:0]	Value of the quantity to transmit (defined via DIP- switch and phase selected via PHASE_RETR register, 40017) which gives the minimum value (0%) of the transmitted output. The value is expressed in floating point format (most significative word) and therefore it must be expressed in the corresponding measurement unit of the quantity chosen (V for Vrms, mA for Irms, W for Watt). Default: 0,0.			VR VR VR VR
SSENECA	MI001455-I-E ENGL	ISH -	9/16	S

	00000000 (0:00); 4000 David		
	00000000 (0x00): 4800 Baud 00000001 (0x01): 9600 Baud		
	00000010 (0x01): 9000 Baud		
	00000011* (0x03): 38400 Baud		
	00000100 (0x04): 57600 Baud		
	00000101 (0x05): 115200 Baud		
	00000110 (0x06): 1200 Baud		
	00000111 (0x07): 2400 Baud		
Bit [7:0]	Set the response delay time in characters that		
	represents the number of pauses of 6 characters		
	each to be entered between the end of the Rx		
	message and the start of the Tx message. Default: 0		
RESET ZERO	Reset instrument and zero setting energy	40131	DAA
ENERGY	Reset instrument and zero setting energy	40131	R/W
Bit [15:0]	-Writing 0x1234 resets(boots) instrument.		
	-Writing 0x1000, resets active energy		
	accumulation in all three phases (unless ERR led		
	is blinking).		
STATUS	Status Register	40133	R
Bit 15	1: Error saving Active Energy value.		
Bit [14:7]	Not Used.		
Bit 6	1: Phase B and C are reverse-connected		
Bit 5	1: Voltage on phase C is > 40 V therefore		
	measurements on phase C are correctly acquired.		
Bit 4	1: Voltage on phase B is > 40 V therefore		
	measurements on phase B are correctly acquired.		
Bit 3	1: Voltage on phase A is > 40 V therefore		
	measurements on phase A are correctly acquired.		
Bit [2:0]	Non utilizzati.		
VRMS_A_FL_MSW	Single phase or phase A Vrms measurement (floating point, most significative word) in Volt	40135	R
VRMS A FL LSW	Single phase or phase A Vrms measurement	40136	R
	(floating point, least significative word) in Volt		
VRMS B FL MSW	Phase B Vrms measurement (floating point,	40427	R
VKW3_D_FL_W3W	most significative word) in Volt	40137	ĸ
VRMS B FL LSW	Phase B Vrms measurement (Floating point,	40120	R
	least significative word) in Volt	40130	ĸ
VRMS C FL MSW	Phase C Vrms measurement (floating point,	40120	R
VRWS_C_FL_WSVV	most significative word) in Volt	40139	ĸ
VRMS_C_FL_LSW	Phase C Vrms measurement (Floating point,	40140	R
	least significative word) in Volt		
SENECA	MI001455-I-E ENGLI	SH - 1	1/16

Imaxout_fl_msw Imaxout_fl_msw Bit [15:0] Imaxout_fl_msw Bit [15:0] Imaxout_fl_msw MAXOUT_fl_LSW Imaxout_fl_msw Bit [15:1] Imaxout_fl_msw Bit [15:1] Imaxout_fl_msw	Value of the quantity to transmit which gives the minimum retransmitted output (floating point format, least significative word). Value of the quantity to transmit which gives the maximum retransmitted output (floating point format, most significative word). Value of the quantity to transmit (defined via DIP- witch and phase selected via PHASE, RETR register, 40017) which gives the maximum value (100%) of the transmitted output. The value is szpressed in floating point format (most significative word) and therefore it must be expressed in the corresponding measurement unit of the quantity to transmit which gives the maximum retransmitted output (floating point format, least significative word). Enables measurement errors compensation of Active Power and Energy caused by	40022	R/W
Bit [15:0] S Bit [15:0] S Bit [15:1] N Bit [15:1] N Bit 0 1	the maximum retrainsmitted output (floating pointformat.mostsignificative.word). Value of the quantity to transmit (defined via DIP- switch and phase selected via PHASE_RETR register, 40017) which gives the maximum value (100%) of the transmitted output. The value is expressed in floating point format (most significative word) and therefore it must be expressed in the corresponding measurement unit of the quantity chosen (V for Vms, mA for rms, W for Watt). Default: 600,0. Value of the quantity to transmit which gives the maximum retransmitted output (floating point format, least significative word). Enables measurement errors compensation of Active Power and Energy caused by	40023	R/W
MAXOUT_FL_LSW Y MECK_FREQ E Bit [15:1] N Bit 0 E	switch and phase selected via PHASE_RETR register, 40017) which gives the maximum value (100%) of the transmitted output. The value is expressed in floating point format (most significative word) and therefore it must be expressed in the corresponding measurement nit of the quantity chosen (V for Vrms, mA for Irms, W for Watt). Default: 600,0. Value of the quantity to transmit which gives the maximum retransmitted output (floating point format, least significative word). Enables measurement errors compensation of Active Power and Energy caused by	40023	
L L <thl< th=""> <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<></thl<>	the maximum retransmitted output (floating point format, least significative word). Enables measurement errors compensation of Active Power and Energy caused by	40024	
Bit [15:1] N Bit 0 E 1	of Active Power and Energy caused by		R/W
Bit 0 E fi 1	network frequency variations.		
<i>fi</i> 1	Notused		
n E	Errors compensation caused by network frequency variations: 1:1 f network frequency is not stable at 50 Hz or 60 Hz, or has consistent variations (> 30 mHz), this register corrects the measurement of Power and Energy. The measurements of Vrms and Irms are not influenced by this setting.		
	Register for the setting of the module's address and parity control.	40025	R/W
02	Set the module's address. Allowed values from 0x00 a 0xFF (decimal values in the interval of 0- 255). Default: 1.		
0	Set the type of parity control: 00000000* : No parity (NONE) 00000001 : Even parity (EVEN) 00000010 : Odd parity (ODD)		
	Register for the setting of the Baud rate and	40026	R/W
Bit [15:8]	the response delay time in characters.		

VDMS 3DH EL MSW	Mean Vrms in Volt: (V _A +V _B +V _C)/3 (floating)	40141	R
	point, most significative word).	40141	
VRMS 3PH FL LSW	Mean Vrms in Volt: (V _A +V _B +V _C)/3 (floating	40142	R
	point, least significative word).	40142	
IRMS_A_FL_MSW	Single phase or phase A Irms measurement	40143	R
	(floating point, most significative word) in mA		
IRMS_A_FL_LSW	Single phase or phase A Irms measurement	40144	R
	(floating point, least significative word) in mA		
IRMS B FL MSW	Phase B Irms measurement (floating point,	40145	R
	most significative word) in mA.		
IRMS B FL LSW		40146	R
	least significative word) in mA.		
			_
IRMS_C_FL_MSW	Phase C Irms measurement (floating point,	40147	R
	most significative word) in mA.	404.40	R
IRMS_C_FL_LSW	Phase C Irms measurement (Floating point, least significative word) in mA.	40148	ĸ
	least significative word) in mA.		
IRMS 3PH FL MSW	Mean Irms in mA: (I _A +I _B +I _c)/3 (floating point,	40149	R
	most significative word).		
IRMS_3PH_FL_LSW	Mean Irms in mA: (I _A +I _B +I _C)/3 (floating point,	40150	R
	least significative word).		
WATT A FL MSW	Single phase or phase A Power measurement	10151	R
WATT_A_TE_MSW	(floating point, most significative word) in W	40131	I.
WATT A FL LSW	Single phase or phase A Power measurement	40152	R
	(floating point, least significative word) in W		
			_
WATT_B_FL_MSW	Phase B Power measurement (floating point,	40153	R
	most significative word) in W	40454	R
WATT_B_FL_LSW	Phase B Power measurement (floating point, least significative word) in W	40154	ĸ
	least significative word) in w		
WATT_C_FL_MSW	Phase C Power measurement (floating point,	40155	R
	most significative word) in W		
WATT_C_FL_LSW	Phase C Power measurement (floating point,	40156	R
	least significative word) in W		
WATT 3PH FL MSW	Three phase Power in W: P _A +P _B +P _C (floating	40157	R
WATI_3FII_1E_M3W	point, most significative word).	40137	I.
WATT 3PH FL LSW	Three phase Power in W: $P_A+P_B+P_c$ (floating	40158	R
	point, least significative word).	40100	
VAR_A_FL_MSW	Single phase or phase A Reactive Power in	40159	R
	VAR (floating point, most significative word).		
VAR_A_FL_LSW	Single phase or phase A Reactive Power in	40160	R
	VAR (floating point, least significative word).		
SFNFCA		21 1	2/10

VAR_B_FL_MSW	Phase B Reactive Power in VAR (floating point, 40161	R
	most significative word).	
VAR_B_FL_LSW	Phase B Reactive Power in VAR (floating point, 40162	R
	least significative word).	
VAR_C_FL_MSW	Phase C Reactive Power in VAR (floating point, 40163	R
	most significative word).	
VAR_C_FL_LSW	Phase C Reactive Power in VAR (floating point, 40164	R
	least significative word).	
		R
VAR_3PH_FL_MSW	Reactive power three-phase in VAR: QA+QB+QC 40165 (floating point, most significant word).	K
		- <u>-</u>
VAR_3PH_FL_LSW	Reactive power three-phase in VAR: QA+QB+Qc 40166	R
	(floating point, least significant word).	
VA A FL MSW	Single phase or phase A Apparent Power in VA 40167	R
	(floating point, most significative word).	
VA_A_FL_LSW	Single phase or phase A Apparent Power in VA 40168	R
	(floating point, least significative word).	
	<u>,</u>	_
VA_B_FL_MSW	Phase B Apparent Power in VA (floating point, 40169	R
	most significative word).	
VA_B_FL_LSW	Phase B Apparent Power in VA (floating point, 40170	R
	least significative word).	
VA C FL MSW	Phase C Apparent Power in VA (floating point, 40171	R
VA_0_I L_MOW	most significative word).	1
VA C FL LSW	Phase C Apparent Power in VA (floating point, 40172	R
VA_C_FL_LOW	least significative word).	n
	ieast significative word).	
VA_3PH_FL_MSW	Apparent Power Three-phase in VA: SA+SB+SC 40173	R
	(floating point, most significative word).	
VA_3PH_FL_LSW	Apparent Power Three-phase in VA: SA+SB+SC 40174	R
	(floating point, least significative word).	
	Single phase or phase A Power factor 40175	R
$cos\Phi_A_FL_MSW$	(floating point, most significative word).	ĸ
	Single phase or phase A Power factor 40176	R
$cos\Phi_A_FL_LSW$	(floating point, least significative word).	K
	(noading point, least significative word).	
cos B FL MSW	Phase B Power factor cos (floating point, 40177	R
	most significative word).	
cos B FL LSW	Phase B Power factor cos (floating point, 40178	R
	least significative word).	
		-
$cos\Phi_C_FL_MSW$	Phase C Power factor cos (floating point, 40179	R
	most significative word).	
SENECA		
I JEINELA	MI001455-I-E ENGLISH - 1	3/16

cos0_C_FL_LSW	Phase C Power factor cos (floating point, least significative word).	40180	R
$cos\Phi_3PH_FL_MSW$	<u>cos</u> three phase: WATT_3PH / VA_3PH (floating point, most significative word).	40181	R
cos0_3PH_FL_LSW	<u>cos</u> three phase: WATT_3PH / VA_3PH (floating point, least significative word).	40182	R
FREQ_FL_MSW	Frequency measurement in Hz (floating point, most significative word).	40183	R
FREQ_FL_LSW	Frequency measurement in Hz (floating point, least significative word).	40184	R
ENER_A_FL_MSW	Single phase or phase A Active Energy in Wh (floating point, most significative word).	40185	R
ENER_A_FL_LSW	Single phase or phase A Active Energy in Wh (floating point, least significative word).	40186	R
ENER_B_FL_MSW	Phase B Active Energy in Wh (floating point, most significative word).	40187	R
ENER_B_FL_LSW	Phase B Active Energy in Wh (floating point, least significative word).	40188	R
ENER_C_FL_MSW	Phase C Active Energy in Wh (floating point, most significative word).	40189	R
ENER_C_FL_LSW	Phase C Active Energy in Wh (floating point, least significative word).	40190	R
ENER_3PH_FL_MSW	Active energy three phase in Wh: $E_A+E_B+E_C$ (floating point, most significative word).	40191	R
ENER_3PH_FL_LSW	Active energy three phase in Wh: E _A +E _B +E _c (floating point, least significative word).	40192	R
VRMS_A_INT	Single phase or phase A Vrms normalised 0+10000.	40193	R
VRMS_B_INT	Phase B Vrms normalised 0+10000.	40194	R
VRMS_C_INT	Phase C Vrms normalised 0+10000.	40195	R
VRMS_3PH_INT	Mean Vrms (V _A +V _B +V _C)/3_normalised 0+10000.	40196	R
IRMS_A_INT	Single phase or phase A Irms normalised 0+10000.	40197	R
IRMS_B_INT	Phase B Irms normalised 0+10000.	40198	R
IRMS_C_INT	Phase C Irms normalised 0+10000.	40199	R

MI001455-I-E

ENGLISH - 14/16	S

IRMS_3PH_INT	$\underline{\text{Mean Irms } (I_{\mathbb{A}}+I_{\mathbb{B}}+I_{\mathbb{C}})/3 \text{ normalised } 0+10000.}$	40200	R
WATT_A_INT	Single phase or phase A Active power normalised 0+10000.	40201	R
WATT_B_INT	Phase B Active power normalised 0+10000.	40202	R
WATT_C_INT	Phase C Active power normalised 0+10000.	40203	R
WATT_3PH_INT	Three phase active power P _A +P _B +P _C normalised 0+10000.	40204	R
VAR_A_INT	Single phase or phase A Reactive Power normalised -10000+10000.	40205	R
VAR_B_INT	Phase B Reactive Power normalised - 10000+10000.	40206	R
VAR_C_INT	Phase C Reactive Power normalised - 10000+10000.	40207	R
VAR_3PH_INT	Three phase reactive power Q _A +Q _B +Q _C normalised -10000+10000.	40208	R
VA_A_INT	Single phase or phase A Apparent Power normalised 0+10000	40209	R
VA_B_INT	Phase B Apparent Power normalised 0+10000	40210	R
VA_C_INT	Phase C Apparent Power normalised 0+10000	40211	R
VA_3PH_INT	Apparent power three phase S _A +S _B +S _C normalised 0+10000.	40212	R
cos⊕_A_INT	Single phase or phase A power factor cos normalised: -10000+10000.	40213	R
cos⊕_B_INT	Phase B power factor cos on normalised: -10000+10000.	40214	R
cos⊕_C_INT	Phase C power factor cos ⁽¹⁾ normalised: -10000+10000.	40215	R
cos@_3PH_INT	Three phase power factor cos⊕=WATT/VA normalised: -10000+10000	40216	R
SSENECA	MI001455-I-E ENGL	ISH - 1	5/16

RETRANS_INT	Visualize the quantity to transmit normalised 0+10000, scaled to min and MAX values set.	40217	R
Bit [15:0]	Value of the quantity to transmit normalised 0.+1000, scaled to the minimum and maximum threshlod set in registers MINOUT_FL (40020- 21) e MAXOUT_FL (40022-23) respectively. 0. if the floating point value of the quantity to transmit is less than MINOUT_FL (40020-21). 10000: if the floating point value of the quantity to transmit is equal to MAXOUT_FL (40022-23). In the intermediate points has a linear behaviour. The value of the register follows linearly the quantity to transmit until maximum value set to 11000, saturating over this value.		

Disposal of Electrical & Electronic Equipment (Applicable throughout the European Union and other European countries with separate collection programs)

This symbol, found on your product or on its packaging, indicates that this product should not be treated as household waste when you wish to dispose of it. Instead, it should be handed over to an applicable collection point for the recycling of electrical and electronic equipment. By ensuring this product is X disposed of correctly, you will help prevent potential negative consequences to the environment and human health, which could otherwise be caused by inappropriate disposal of this product. The recycling of materials will help to conserve natural resources. For more detailed information about the recycling of this product, please contact your local city office, waste disposal service or thè retail store where you purchased this product.

This document is property of SENECAsrl. Duplication and reprodution are forbidden, if not authorized. Contents of the present documentation refers to products and technologies described in it. All technical data contained in the document may be modified without prior notice Content of this documentation is subject to periodical revision.

CSQ- <u>IQNet</u> -	E NECA s.r.l. /ia Germania, 34 - 35127 - Z. el. +39.049.8705355 - 87053 -mail: <u>info@seneca.it - www.</u>	I. CAMIN - PADOVA - ITALY 59 - Fax +39.049.8706287 <u>seneca.it</u>
SENECA	MI001455-I-E	ENGLISH - 16/16

SENECA

MI001455-I-E

ENGLISH - 10/16

SENECA

MI001455-I-E ENGLISH - 12/16 **SENECA**