
ISaGRAF
Version 3.3

USER'S GUIDE

CJ INTERNATIONAL
Information in this document is subject to change without notice and does not represent a
commitment on the part of CJ International. The software, which includes information contained in
any databases, described in this document is furnished under a license agreement or

nondisclosure agreement and may be used or copied only in accordance with the terms of that
agreement. It is against the law to copy the software except as specifically allowed in the license or
nondisclosure agreement. No part of this manual may be reproduced in any form or by any means,
electronic or mechanical, including photocopying and recording, for any purpose without the
express written permission of CJ International.

© 1998 CJ International. All rights reserved.
Printed in France by CJ International.
86 Rue de la Liberté
F-38180 SEYSSINS
Phone: 33 (0)4 76 48 99 06
Fax: 33 (0)4 76 96 43 54

ISaGRAF is a registered trademark of CJ International.
MS-DOS is a registered trademark of Microsoft Corporation.
Windows is a registered trademark of Microsoft Corporation.
Windows NT is a registered trademark of Microsoft Corporation.
OS-9 and ULTRA-C are registered trademarks of Microware Corporation.
VxWorks and Tornado are registered trademarks of Wind River Systems, Inc.

All other brand or product names are trademarks or registered trademarks of their respective
holders.

Table of contents

A. USER'S GUIDE A-11

A.1 Getting started A-12
A.1.1 Installing ISaGRAF A-12
A.1.2 Using on-line information A-14
A.1.3 A sample application A-15

A.2 Managing projects A-19
A.2.1 Creating and working with projects A-19
A.2.2 Working with several groups of projects A-20
A.2.3 Options A-21
A.2.4 Tools A-21

A.3 Managing programs A-23
A.3.1 The components of a project A-23
A.3.2 Working with programs A-24
A.3.3 Running the code generation tools A-28
A.3.4 Other ISaGRAF tools A-28
A.3.5 Adding commands to the Tools menu A-29
A.3.6 Simulating and debugging the application A-30

A.4 Using the SFC editor A-32
A.4.1 SFC language main topics A-32
A.4.2 Entering an SFC chart A-34
A.4.3 Working on an existing SFC chart A-36
A.4.4 Entering the level 2 programming A-37
A.4.5 Using the SFC gallery A-40

A.5 Using the Flow Chart editor A-41
A.5.1 Basics of the FC language A-41
A.5.2 Entering a Flow Chart A-42
A.5.3 Working on an existing chart A-44
A.5.4 Entering level 2 programs A-45

A.5.5 Programming level 2 with Quick LD A-46
A.5.6 Display options A-47

A.6 Using the Quick LD editor A-48
A.6.1 Basics of the LD language A-48
A.6.2 Entering an LD diagram A-50
A.6.3 Working on an existing diagram A-53
A.6.4 Display options A-54

A.7 Using the FBD/LD editor A-56
A.7.1 Basics of the FBD/LD languages A-56
A.7.2 Entering an FBD diagram A-58
A.7.3 Working on an existing diagram A-60
A.7.4 Display options A-61
A.7.5 Styles and modification tracking A-61

A.8 Using the text editor A-63
A.8.1 Editing commands A-63
A.8.2 Options A-63

A.9 More about program editors A-65
A.9.1 Calling other ISaGRAF tools A-65
A.9.2 Parameters of the program A-65
A.9.3 Other commands of the "File" menu A-66
A.9.4 Updating the program diary A-67
A.9.5 Selecting a variable from dictionary A-67
A.9.6 The output window A-68

A.10 Using the dictionary editor A-70
A.10.1 The dictionary main window A-72
A.10.2 Managing variables A-72
A.10.3 Description of objects A-74
A.10.4 Quick declaration A-75
A.10.5 Modbus SCADA addressing map A-76
A.10.6 Exchanging information with other applications A-77

A.11 Using I/O connection editor A-81
A.11.1 Defining I/O boards A-82
A.11.2 Setting board parameters A-83
A.11.3 Connecting I/O channels A-83

A.11.4 Directly represented variables A-83
A.11.5 Numbering A-84
A.11.6 Setting individual protections A-85

A.12 Creating conversion tables A-86
A.12.1 Main commands A-86
A.12.2 Entering points of a table A-86
A.12.3 Rules and limits A-87

A.13 Using the code generator A-88
A.13.1 Main commands A-88
A.13.2 Compiler options A-89
A.13.3 Producing C source code A-91
A.13.4 Viewing information A-91
A.13.5 Defining resources A-92

A.14 Cross References A-97

A.15 Using the graphic debugger A-99
A.15.1 The debugger window A-99
A.15.2 Controlling the application A-100
A.15.3 Options A-101
A.15.4 "Write" commands A-102
A.15.5 On line modification A-103
A.15.6 DDE exchanges A-106

A.16 Spying Lists of variables A-108

A.17 Debugging ST and IL programs A-110

A.18 Debugging with SpotLight A-111
A.18.1 Building the graphic layout A-111
A.18.2 The list layout A-113
A.18.3 Defining the item style A-113
A.18.4 Commands of the "File" menu A-114
A.18.5 Note for ISaGRAF V3.2 users A-115

A.19 Uploading applications A-116
A.19.1 Uploading a project A-116
A.19.2 Communication settings A-116

A.19.3 Preparing a project for upload A-117
A.19.4 How zipped source is stored in the target A-117
A.19.5 Memory requirements on the target A-118
A.19.6 About uploaded project A-118
A.19.7 Compatibility issues A-118

A.20 Using the Diagnosis tool A-119

A.21 Using the ISaGRAF simulator A-120
A.21.1 Links with the debugger A-120
A.21.2 I/O simulation A-120
A.21.3 Library components A-121
A.21.4 Options A-121
A.21.5 Saving and restoring input states A-122
A.21.6 The cycle profiler A-122
A.21.7 Simulation scripts A-123

A.22 Using the Library Manager A-131
A.22.1 Managing library elements A-131
A.22.2 I/O configuration A-133
A.22.3 I/O complex equipment A-134
A.22.4 I/O board A-134
A.22.5 Functions and blocks written in IEC languages A-136
A.22.6 "C" Functions and function blocks A-137
A.22.7 Conversion functions A-138

A.23 Using the Archive utility A-139
A.23.1 Calling the archive manager A-139
A.23.2 Options A-140
A.23.3 Backup and restore A-140
A.23.4 Archive files A-140

A.24 Printing a complete document A-142
A.24.1 Customising the table of contents A-142
A.24.2 Options A-143

A.25 Password protection A-145

A.26 Advanced programming techniques A-148
A.26.1 More about ISaGRAF tools A-148

A.26.2 Locked I/Os and virtual I/Os A-148
A.26.3 PC-PLC link validation A-151
A.26.4 ISaGRAF directories A-151
A.26.5 Application symbols A-153
A.26.6 Limits of ISaGRAF "LARGE" (WDL) workbench A-157

B. LANGUAGE REFERENCE B-161

B.1 Project architecture B-162
B.1.1 Programs B-162
B.1.2 Cyclic and sequential operations B-162
B.1.3 Child SFC and FC programs B-163
B.1.4 Functions and sub-programs B-163
B.1.5 Function blocks B-164
B.1.6 Description language B-165
B.1.7 Execution rules B-166

B.2 Common objects B-167
B.2.1 Basic types B-167
B.2.2 Constant expressions B-167
B.2.3 Variables B-169
B.2.4 Comments B-172
B.2.5 Defined words B-173

B.3 SFC language B-175
B.3.1 SFC chart main format B-175
B.3.2 SFC basic components B-175
B.3.3 Divergences and convergences B-177
B.3.4 Macro steps B-179
B.3.5 Actions within the steps B-180
B.3.6 Conditions attached to transitions B-185
B.3.7 SFC dynamic rules B-187
B.3.8 SFC program hierarchy B-187

B.4 Flow Chart language B-189
B.4.1 FC components B-189
B.4.2 FC complex structures B-192
B.4.3 FC dynamic behaviour B-193
B.4.4 FC checking B-193

B.5 FBD language B-194
B.5.1 FBD diagram main format B-194
B.5.2 RETURN statement B-195
B.5.3 Jumps and labels B-195
B.5.4 Boolean negation B-196
B.5.5 Calling function or function blocks from the FBD B-196

B.6 LD language B-198
B.6.1 Power rails and connection lines B-198
B.6.2 Multiple connection B-199
B.6.3 Basic LD contacts and coils B-200
B.6.4 RETURN statement B-205
B.6.5 Jumps and labels B-206
B.6.6 Blocks in LD B-207

B.7 ST language B-209
B.7.1 ST main syntax B-209
B.7.2 Expression and parentheses B-209
B.7.3 Function or function block calls B-210
B.7.4 ST specific boolean operators B-211
B.7.5 ST basic statements B-213
B.7.6 ST extensions B-218

B.8 IL language B-224
B.8.1 IL main syntax B-224
B.8.2 IL operators B-225

B.9 Standard operators, function blocks and functions B-232
B.9.1 Standard operators B-232
B.9.2 Standard function blocks B-252
B.9.3 Standard functions B-270

C. TARGET USER'S GUIDE C-310

C.1 Introduction C-311

C.2 Installation C-312

C.3 Getting started with ISaGRAF DOS target C-313

C.3.1 Running ISaGRAF: ISA.EXE C-313
C.3.2 Specific features C-314

C.4 Getting started with ISaGRAF OS9 target C-317
C.4.1 Running the ISaGRAF single task: isa C-317
C.4.2 Running the ISaGRAF multitasks: isaker, isatst, isanet C-318
C.4.3 Specific features C-322

C.5 Getting started with ISaGRAF VxWorks target C-326
C.5.1 The system resource manager: isassr.o C-326
C.5.2 Common features to isa.o, isakerse.o and isakeret.o C-326
C.5.3 Running the ISaGRAF single task: isa.o C-327
C.5.4 Running the ISaGRAF multitasks: isakerse.o and isakeret.o C-329
C.5.5 Specific features C-333

C.6 Getting started with ISaGRAF NT target C-337
C.6.1 Running ISaGRAF C-337
C.6.2 General information on options C-337
C.6.3 Specific features C-341
C.6.4 User interface C-345

C.7 "C" programming C-351
C.7.1 Overview C-351
C.7.2 "C" Conversion functions C-352
C.7.3 "C" Functions C-357
C.7.4 "C" FUNCTION BLOCKS C-364
C.7.5 Compiling and linking techniques C-380

C.8 Modbus link C-386
C.8.1 MODBUS network and protocol C-386
C.8.2 ISaGRAF implementation C-387

C.9 Power fail management C-392
C.9.1 Basics C-392
C.9.2 Application variables backup C-393
C.9.3 Program state backup C-396

C.10 Appendix: Error list and description C-398

D. GLOSSARY D-408

E. GENERAL INDEX E-416

A. User's guide

A.1 Getting started

This chapter covers the installation of the ISaGRAF workbench. It also includes a short
example of an ISaGRAF application, giving the user a brief outline of its main features
and enabling the immediate use of ISaGRAF.

A.1.1 Installing ISaGRAF

This chapter covers the installation of the ISaGRAF Workbench and how to set up the
computer for application development.

Hardware and software requirements
The ISaGRAF Workbench can be installed on any computer meeting the minimum
qualifications for Windows Version 3.1. However, the following hardware is
recommended for application development:

• A personal computer using an 80486 or higher microprocessor
 (Pentium processor recommended)
• 8 megabytes of conventional and extended memory
 (16 megabytes recommended)
• One 3.5-inch (1.44 megabyte) disk drive
• One hard disk with at least 20 megabytes of available space
• A graphic VGA or SVGA adapter and compatible monitor
• A mouse (required for graphic development tools)
• A parallel LPT1 port (required for protection key)

Before installing the ISaGRAF workbench, the following software should already
included on the system:

• Windows Version 3.1 running in 386 enhanced mode
• Windows 95
• Windows NT Version 3.51 or 4.00

Using the installation program
The ISaGRAF workbench is installed by using INSTALL, the ISaGRAF installation
program. This program copies the ISaGRAF software from the ISaGRAF CD-ROM or
disks onto the user's hard disk. INSTALL also adds the group "ISaGRAF" to the
Program Manager window and creates an initialisation file named "ISA.ini" in the
installed EXE sub-directory.

INSTALL is a Windows program, which must be run from the Windows Program
Manager or the Run command of the Start menu of Windows 95. To install ISaGRAF,
the following steps must be performed:

• Insert ISaGRAF CD-ROM or floppy disk #1 into the appropriate drive
• From the Program Manager or the Start menu, run "SETUP.EXE" on the root folder of
the CD-ROM, or "A:\INSTALL.EXE" in the case of floppy disks.

• Follow the on-line instructions to complete the installation. It is recommended that the
ISaGRAF Workbench be installed on a new directory to avoid confusing files with files
from other ISaGRAF versions.

INSTALL will ask whether the following components are required:

• ISaGRAF executable programs
• On line information and help files
• ISaGRAF standard libraries
• ISaGRAF sample applications

It is highly recommended that when installing ISaGRAF for the first time all components
be included. Further components can, however, be added at a later date by re-installing
the ISaGRAF Workbench.

The default name for the ISaGRAF main directory is "\ISAWIN". This allows ISaGRAF
for Windows to be easily installed on the same disk as a version of ISaGRAF for MS-
DOS. Refer to the "ISaGRAF directories" section in the "Advanced techniques" chapter
for more about ISaGRAF disk architecture. Once all the ISaGRAF files have been
copied, the following group is added to your Program Manager Window:

Here are the main ISaGRAF icons:

Projects:..............Project management
Libraries:Library management
Book:...................On-line information about ISaGRAF
Diagnosis:...........Diagnosis tool for end user
Read Me:.............Information about the ISaGRAF new version
Report:Standard Bug report form

In case you encounter a problem, use the standard bug report form. Open it, fill the
items requested and use the File/Save As menu command to save it with a given file
name. Then send this file to CJ International, using Fax or e-mail.

Updating system files
Once installation is complete, the CONFIG.SYS file needs to be updated before
restarting the computer. The ISaGRAF directory pathname does not have to be inserted
in the PATH variable.
ISaGRAF does not use any MS-DOS environment variable. However, the following
statements can be added to the CONFIG.SYS file:

files=20
buffers=20

The ISaGRAF Workbench uses a serial port to communicate with the ISaGRAF target
PLC. The default serial port for ISaGRAF is COM1. If the mouse also uses a serial
port, choose COM2 for the mouse, so the default COM1 specification will be valid for
any new ISaGRAF applications.

After updating the CONFIG.SYS file, it is necessary to restart the computer for the
changes to take effect.

⇒ Important for Windows NT user:
When the Workbench is used under Windows NT 3.51 or 4.00, the following line has to
be inserted in [WS001] section of ISA.ini file in \ISAWIN\EXE directory:

[WS001]
NT=1
Isa=C:\ISAWIN
IsaExe=C:\ISAWIN\EXE
IsaApl=C:\ISAWIN\APL1
IsaTmp=C:\ISAWIN\TMP

This is absolutely required for RS communication.

The protection key
A hardware key protects the ISaGRAF software against illegal copies. However, most
functions of the ISaGRAF workbench are still available when the key is not inserted.
The protection key also defines the option of the ISaGRAF Workbench, and defines the
maximum size of developed applications. When the key is not inserted or not properly
connected, some of the ISaGRAF Workbench functions will not run. This is NORMAL
behaviour. To ensure that the key is properly connected, select the "About..." choice of
the "Help" menu in any ISaGRAF window. The available option of the ISaGRAF
workbench is displayed.

The key can be connected to any parallel port on the computer. If the machine has more
than one parallel port, it is preferred to connect the key and the printer to different ports.
For some PC/printer configurations, the key may not be recognised when its output is
connected to an "off-line" printer. In this case, disconnect the printer, or start it in the
"on-line" state, and restart the ISaGRAF Workbench.

Note that no key is needed for the ISaGRAF-32 Workbench.

⇒ Important for Windows NT user:
On Windows NT systems, the Sentinel/Rainbow Driver has to be installed in order for
the protection key to be seen. A separate diskette is provided.

A.1.2 Using on-line information

On-line information is installed with the ISaGRAF workbench, for the following topics:
• ISaGRAF languages reference
• Complete user's guide (for any ISaGRAF tool)
• Technical note for elements in the libraries

From any ISaGRAF window, select the choices of the "Help" menu to display online
information.

A.1.3 A sample application

This chapter explains, step by step, all the basic operations required to make, design,
generate and test a short but complete multi-language application.

Below are the complete specifications of this application, mixing LD and SFC
representations:
Boolean variables:

IX0_1, IX0_2: input variables for process command
RunCmd: internal "run/stop" command
QX1_1: output variable: status of the process

Program Command: Cyclic begin section - LD language
Evaluates the internal "run/stop" command

IX0_1 IX0_2 RunCmd

Program RunStop: Sequential section - SFC language
Controls the process

1

1
TRUE;

2 (* Wait: no special action *)

2
RunCmd;

3 QX1_1;

3
NOT(RunCmd);

2

Start Running the ISaGRAF workbench
To run the ISaGRAF Workbench, run the "Projects" command, in the "ISaGRAF"
group, from the Start menu of Windows.

Creating the project
Create the project (called "RunStop") using the "New" command of the "File" menu or
the New button. In the open dialog box:

Enter project name: "RunStop"
Select I/O configuration: "Sim_Boo"
Press the "OK" button.
The project has now been created.

Opening the project
The programs of the project are defined by opening the ISaGRAF program
management window. Use the "Open" command of the Project management window, or
double click the mouse on the name of the project or use the Edit button.

Creating the programs
The Program Management window is now open and empty (no programs defined). The
first program is created using the "New" command of the "File" menu or the "New"
button. In the open dialog box:

Enter the name of the program: "Command".
Select the "Quick LD" language.
Select the "Beginning of cycle" section.
Press the "OK" button to create the program.

The same operation must be repeated for the second program:
Use the "New" command of the "File" menu, or the "New" button. In the open dialog
box:

Enter the name of the program: "RunStop".
Select the "SFC" language.
Select the "Sequential" section.
Press the "OK" button to create the program.

The programs are now created. They appear in the Program Management window.

Declaring the variables
Before entering the programs, the internal variable to be used in the programming must
be declared. This is done using the command "Dictionary" of the "File" menu or the
Dictionary button. I/O variables are automatically declared when the project is created.

The dictionary window is now opened. With the menu "File", the Sub-menu "Other", the
Sub-menu "Global variables" and then the command "Booleans", select the "Global"
boolean dictionary. Buttons Global objects and Boolean can be used for the same
effect.

The "New" command of the "Edit" menu is used to create new boolean variables. You
can also use the Insert objects button. In the open dialog box, enter the description of
the internal variable:

name: RunCmd
comment: Run/Stop command: internal
attribute: Select the "Internal" attribute
Press the "Store" button: the variable is created.
Press the "Cancel" button to exit the dialog box.

Finally, exit the dictionary editor and save the modifications entered: Menu "File" -
Command "Exit". Click on "YES" to save modifications.

Editing the Quick LD program
To start editing the "Command" LD program, double click on its name in the Program
Management window or use the Edit button.

The ISaGRAF Quick LD Editor window is now open. To increase the working area,
resize the window to use the full screen size.

F2 F3 Press F2 and F3 key:
(* *)

Associate variables to the LD symbols: move the cursor using the keyboard arrows.
Place the cursor on each symbol and press Enter key. The variable section dialog box
is opened.
For the first contact, type in the variable selection box: IX0_1 then Enter.
For the second contact, type in the variable selection box: IX0_2 then Enter.
For the coil, type in the variable selection box: RunCmd then Enter.

The program is now complete. Here is the result:
IX0_1 IX0_2 RunCmd

Exit from the editor, and save the modifications entered: Menu "File" - Command "Exit".
Click on "YES" to save modifications.

Editing the SFC program
To start editing the "RunStop" SFC program, double click on its name in the Program
Management window or use the Edit button.

The SFC Editor window is now open. To increase the working area, resize the window
to use the full screen size:

The initial step already exists and is selected. Press the "Down" keyboard arrow to
select the empty cell after the initial step (0,1)

F4 F3 Press F4 then F3 to insert a step and a transition.
F4 F3 Press F4 then F3 to insert one more step and transition.
F5 Press F5 to insert a jump to a step and select GS2 as the destination of the jump.

The chart is now complete. Press the "Zoom" button in the toolbar to increase size of
cells and give space to display level 2 instructions. Here is the chart:

1

1
2

2
3

3

2

To enter the programming of transition "2", select it using the keyboard arrows and
press "Enter" key. The Level 2 programming window is open. Enter level 2
programming for transition 2:

RunCmd;

^TAB Press "Control + Tab" keys to move focus back to the SFC chart, move selection on
step 3, and press "Enter" key to edit its level 2 text:

QX1_1;
And do the same to enter text of transition 3:

Not (RunCmd);
^F4 Press "Control + F4" keys to close the level 2 window.

The SFC program is now complete. Exit from the editor with Menu "File" and Command
"Exit", and save the modifications entered clicking on "YES".

Building the application code
Use the "Make" menu and command "Make Application" from the Program
Management window to build the application code or the button in the Toolbar.

When the code generation is complete, a dialog box appears, which asks you to exit the
code generation now or to continue working with it: Press the button "Exit".

Simulation
Use the "Debug" menu and command "Simulate" from the Program Management
window to run the ISaGRAF kernel simulator or the button in the Toolbar.

When the Simulator window appears, the application can be tested. In this example,
both inputs 1 and 2 (green buttons) must be pressed to run the process (output red
LED lights).

Close the Debugger window to exit from simulation: Menu "File" - Command "Exit".

A.2 Managing projects

To run the ISaGRAF project management tool, double click the mouse on the "Projects"
icon, in the ISaGRAF group. The "Project Management" window is then opened. A
project corresponds to one PLC loop run on a target PLC. The upper window contains
the list of the existing projects. The text descriptor of the selected project is displayed in
the lower window.

Resizing windows
Just click on the separator (splitter) between project list and descriptor to resize
corresponding windows. The descriptor window cannot be completely hidden. It always
contains at least one line of text.

Inserting separators
A separator line can be inserted before any project name. This allows grouping some
projects attached to the same application in the list layout. Use the "Edit / Toggle
separator" command to insert or delete a separator before the selected project.

 Moving projects in the list
To move a project in the list, you first have to select (highlight) it. Then click on its name
and drag it to a new location in the list. When dragging the project, a small arrow on the
left margin indicates where it will be placed. You can also use the "Move" commands of
the "Edit" menu to move the selected project line by line. Note that if a separator is
placed before the selected project, it is moved with the project.

A.2.1 Creating and working with projects

The commands of the project manager menu are used to create new projects, edit them
and manage existing projects.

Creating a new project
To create a new project, first enter its name. An empty project is then created, with no
object in it. An I/O configuration can be attached to the new created project. This I/O
configuration must be defined in library. If a configuration is chosen, ISaGRAF will
automatically set-up the I/O connection and declare the corresponding I/O variables in
the new project dictionary. When creating or renaming a project, you have to conform
the following naming rules:
• name cannot exceed 8 characters
• the first character must be a letter
• the following characters can be letters, digits or underscore character
• the project's name is case insensitive
When a project is created, use the "Edit / Set comment text" command to enter the
text to be displayed with the project name in the list.

Editing the project descriptor

The "Project / Project descriptor" command is used to edit the project text descriptor.
This document fully identifies the project from the others on the project list. The project
descriptor can also be used to record any remarks during the project lifetime.

Editing project
The "File / Open" command opens the Program Management window for the selected
project. From this window, all the contents (programs, application parameters...) of the
project, can be managed. It is also possible to double click on a project name, to edit it.

The history of modifications
"The ISaGRAF system stores any modification relative to a component of a project in a
history file. Each modification is identified in the history by a title, a date and a time. The
history file contains the last 500 modifications. There is one history file for each project.
The history of modifications for the project is the complement of the "diary" files
attached to the programs of the project. The "Project / History" command allows the
user to view or print the history of modifications for the selected project. The user can
select one or more items in the main list, and press the following buttons:
OKcloses this window
Printsends the contents of the list to the printer
Helpdisplays help about this dialog box
[erase] Selected ...removes (deletes) the selected lines from the list
[erase] Allclears the complete list
Find......................finds a pattern in the list

The input box above the "Find" button is used to enter a search pattern. This function is
case insensitive. When the search reaches the bottom of the list, it continues from the
top of the list to the starting position.

Printing a complete document
The "Project / Print" command allows the user to build and print a complete document
about the selected project. This document can group any component (program,
variable, parameters...) of the selected project. To build a specific (non-complete)
document, the user only has to define its table of contents.

Password protection
The "Project / Set password" command enables the user to define password
protection for tools and data of the selected project. Refer to the "Password
protection" section, at the end of the first part in this manual for further information
about password levels and data protection. Passwords are only relative to the selected
project. They have no influence on other projects and ISaGRAF libraries.

A.2.2 Working with several groups of projects

An ISaGRAF project corresponds to one directory on the disk, where all the project files
are store. A "Project Group" corresponds to a list of project directories grouped together
under the same root directory. A project group is identified by a name. As default,
ISaGRAF creates two project groups:

"Default"on "\ISAWIN\APL": your working area

"Samples"on "\ISAWIN\SMP": sample applications delivered with ISaGRAF
workbench

The name of the currently selected project group is written in the toolbar, close to the
button used to select a project group:

You can also run the "File / Select project group" to select an existing group or create
a new one. The following dialog box is open:

Select a group in the list and press "Select" to activate it in the project management list.
You can also double click on its name to select it. Use the "New group" command to
create a new group. This command can be used either to assign a group name to an
existing directory, or to create a new group with a new directory.

Note: No group can be selected or created when other ISaGRAF windows (program manager,
editors...) are open.

A.2.3 Options

The commands of the "Options" menu are used to display or hide the toolbar, select
the character font for text, and set the Project Manager "auto close" mode. The
character font selected is the one used to display the project descriptor, and is also
used by all ISaGRAF text editors.

When the "Keep Project Manager open" option is removed, the Project Manager
window is automatically closed when a project is entered.

A.2.4 Tools

The commands of the "Tools" menu are used to run other ISaGRAF applications. The
"Tools / Archive Projects" command runs the ISaGRAF archive manager to save or
restore projects. The "Tools / Archive Common data" command is used to save or
restore files used by all projects (such as common defined words).

The "Tools / Libraries" command runs the ISaGRAF library manager in a separate
window.

The "Tools / Import IL program" can be used to import a project described as a single
IL program in a text file, according to PLC Open file exchange format.

A.3 Managing programs

The Program Management window shows the programs (also called modules or
programming units) of the application and groups into its menus the available
commands, to create the project architecture, run editors, compiler and debugger. This
window is the workbench kernel during the development of an application. The Program
Management window opens when running the "Open" command in the Project
Management window.

A.3.1 The components of a project

The components of a project are called programs. A program is a logical entity that
describes one part of the control execution. Global variables (such as I/O variables) can
be used by any program in the application. Local variables may be used by only one
program. Programs are listed in a hierarchy tree, divided into different logical
sections. The window shows the programs and the links between them. The "Top
level" programs appear on the left side of the hierarchy tree.

Top level programs
The top-level programs appear on the left side of the hierarchy tree. Top level programs
of the three first sections are always active, and are executed in the following order,
during the run time cycle (scan):
• (Read inputs)
• Execute the top level programs of the BEGIN section
• Execute the top level programs of the SEQUENTIAL section
• Execute the top level programs of the END section
• (Refresh outputs)

The programs of the "Begin" or "End" sections describe cyclic operations. They are not
dependent on Time. The programs of the "Sequential" section describe sequential
operations, where the Time variable explicitly appears to distinguish basic operations.
The main programs of the "Begin" section are systematically executed at the beginning
of each run time cycle. The main programs of the "End" section are systematically
executed at the end of each run time cycle. The main programs of the "Sequential"
section are executed on the basis of the SFC or FC rules and must be written in SFC or
FC language. The programs of the cyclic sections cannot be described in the SFC or
FC language. Any program of any section may own one or more sub-programs.

Functions and function blocks
The programs of the "Functions" section can be called by any program of any section
in the project. A function is an algorithm that processes one output value from several
input values. A function algorithm only works with volatile intermediate variables, erased
from one call to the other. This implies that a function should never call a function block.
A program of the "Functions" section cannot be described in the SFC or FC language.
Unlike functions, "Function blocks" associate an algorithm working on input values
with hidden static data, which are copied (instanced) by the system on each different
use of the function block. The programs of the "Function Blocks" section can be

called by any program of any section in the project. They cannot be programmed in
SFC or FC language.

Sub-programs
Sub-programs are functions dedicated to one (SFC, FC or other) father program. A
sub-program can be executed (called) by its parent program only. Each program of
each section may have one or more sub-programs. Any language apart from SFC and
FC can be used to describe a sub-program.

Child SFC and FC programs
A child SFC program is a parallel program that can be started or killed by its parent
program. The parent program and child program must both be described in SFC
language.
When a parent program starts a child SFC program, it puts a SFC token into each
initial step of the child program. When a parent program kills a child SFC program, it
clears all the tokens existing in the steps of the child.
Any FC program of the sequential section may control other FC sub-programs. An FC
father program is blocked (waits) during execution of an FC sub-program. It is not
possible that simultaneous operations are done in father FC program and one of its FC
sub-programs.

Links between programs and sub-programs:
Sub-programs and child programs are linked to their parent program by a line in the
hierarchy tree. An arrow ends a link between an SFC program and an SFC child
program. Note that such a link represents parallel operations.

Programming languages
Each program is described in only one language. This language, selected when the
program is created, cannot be changed afterwards. However, FBD diagrams may
include parts in LD, and LD diagrams may include function block calls. Available
graphic languages are SFC (Sequential Function Chart), FC (Flow Chart) FBD
(Functional Block Diagram) and LD (Ladder Diagram). Available literal languages are
ST (Structured Text) and IL (Instruction List). SFC and FC languages are reserved for
main and child programs of the sequential section. The language of each program is
shown as an icon beside the program name in the Program Management window.
Below are the icons used to represent the languages:

 SFCSequential Function Chart
 FC................Flow Chart
 FBDFunctional Block Diagram
 LDLadder Diagram (entered with Quick LD editor)
 STStructured Text
 IL..................Instruction List

A.3.2 Working with programs

The "File" menu groups all the commands used to create, update or modify programs.
It also launches appropriate editors to enter the contents of application programs.

Creating a new program
The "New" function of the "File" menu allows the creation of top level, child or sub-
programs into each program section. The first piece of information to be entered is the
name of the new program according to the following naming rules:
• the maximum length of a name is 8 characters
• the first character must be a letter
• the following characters must be letters, digits or '_' character
• the naming of a program is case insensitive

Next, select the editing language chosen to describe the new program:

SFCSequential Function Chart
FC........................Flow Chart
FBDFunctional Block Diagram (may include parts in LD)
LDLadder Diagram entered with Quick LD editor
STStructured Text
IL..........................Instruction List

Finally, select an execution style for the program:

Begin....................top level of the "Begin" section
Sequentialtop level of the "Sequential" section
Endtop level of the "End" section
Function............... in the "Functions" section
Function block...... in the "Function Blocks" section
Child of.................SFC or FC child or sub-program of an existing program

By selecting one of the first five choices, the program is put at the top level of a Begin,
End, Sequential, Functions or Function Blocks section. The selection of the latter
indicates that the new program is an SFC child program or an FC sub-program or a
sub-program. Remember that a top-level sequential program must be described in the
SFC or FC language, and that the SFC and FC languages cannot be used for cyclic
programs and their sub-programs.

Entering comments for each program
ISaGRAF allows you to attach a description text to each program of the project. This
comment text is displayed with smaller character font beside the name of the program.
Use the "File / Program comment text" command to enter or change the comment
attached to the selected program.

Editing the contents of a program
This command allows the modification of a program's contents. The editor used to enter
a program depends on the language chosen for that program. Program editing is
carried out in individual windows, so that it is possible to edit more than one program
through parallel windows. Pressing the ENTER key allows the editing of the highlighted
program. The user can also double click with the mouse on the name of the program to
edit it.

Editing the "diary" file

A diary file is attached to each program. This is a text file, which contains all the notes
about the modifications made to the program during its lifetime. The diary file can be
edited, freely modified or printed at any time. When leaving the editor used to modify the
source code of a program, a window is automatically opened to enter notes for the diary
list. Such notes are inserted with the correct date and time into the diary file.

The dictionary of variables
The "File / Dictionary" command runs the dictionary editor, where are declared the
variables of the project. Variables may be global (known by any program in the project)
or local to the selected program. The dictionary editor may also be used to declare
defined words, which are semantic aliases, used to replace a name or an expression
in the source code of a program.

Parameters of a function, sub-program or function block
The "File / Parameters" command allows the user to define the call and return
parameters of the selected sub-program, function or function block. This command has
no effect if a main program of the "Begin" or "End" section, or an SFC program is
selected in the Program Management window.
Sub-programs, functions or function blocks may have up to 32 parameters (input or
output). A function or sub-program always has one (and only one) return parameter,
which must have the same name as the function, in order to conform to ST language
writing conventions.

The list in the upper left side of the window shows the parameters, in the order of the
calling model: first the calling parameters, last the return parameters. The lower part of
the window shows the detailed description of the parameter currently selected in the list.
Any of the ISaGRAF data types may be used for a parameter. The return parameters
must be located after calling parameters in the list. Naming parameters must conform to
the following rules:
• the length of the name cannot exceed 16 characters
• the first character must be a letter
• the following characters must be letters, digits or underscore character
• naming is case insensitive

The "Insert" command is used to insert a new parameter before the selected
parameter. The "Delete" command is used to erase the selected parameter. The
"Arrange" command automatically rearranges (sorts) the parameters, so that the return
parameters are put at the end of the list.

Moving a program in the hierarchy tree
The "Rename/move" command of the "File" menu is used to change the name of a
program, or to move it into another section of the hierarchy tree. However the
description language of an existing program cannot be changed. When running this
command, the same window as the one used for creating programs is opened, and all
fields are set up with the attributes of the selected program. The name of a program can
be modified, and another section or parent program selected to move it into the
hierarchy tree.

The "Arrange programs" command of the "File" menu is used to give an explicit order
between a list of programs with same level and father. If the selected program is at the

top level, the command is used to arrange the top-level programs of the selected
section. If the selected program is at a lower level, the command arranges only the SFC
children and sub-programs which have the same father as the selected one. When the
"Arrange programs" dialog box is opened, select the program you want to move, and
press the "Up" or "Down" button to move it in the list.

Copying programs
To make a copy of a program, select the source program from the list of programs, and
run the "File / Copy" command. When running this command, the same window as
that used for creating programs is opened, with all fields set up with the attributes of the
selected program. Enter the name of the destination program and its location in the
sections of the hierarchy tree. If the destination program does not exist, it is created at
the specified location. If the destination program already exists, it is overwritten. All the
local declarations and defined words are copied with the program. The description
language of the destination program must be the same as the one used for the source
program. Press the "OK" button to copy the program.

The "Copy to other project" command of the "File" menu copies the selected
program into another project, with the same name. The child SFC programs and sub-
programs of the selected program can be copied with it. The names of the selected
program and its children must not be used in the target project. Programs cannot be
overwritten by this command. All the attached local declarations and defined words are
copied with the programs.

Deleting programs
To delete a program, first select it from the list of programs, and then run the "File /
Delete" command. A program owning child or sub-programs cannot be deleted. In
order to delete a program with child or sub-programs, the child or sub-programs must
be deleted first. All the local declarations and defined words are deleted with the
program.

Importing function or function block from library
The "Tools / Import from library" command is used to copy a function or a function
block written in IEC language described in the library to the "Functions" or "Function
blocks" section of the open project. Local variables and defined words attached to the
imported function are copied with it. When a function has been correctly imported from
the library, it can be placed in another section or another location in the hierarchy tree,
using the "File / Rename/Move" command. In order to avoid naming clashes, the
imported function or function block must be renamed when imported in the project area.
Don't forget to rename also the return parameter in the case of a function.

Exporting function or function block to library
The "Tools / Export to library" command is used to send a program of the
"Functions" or "Function blocks" section (in the open project) to the appropriate
library. Local variables and defined words attached to the exported function or block are
copied with it. The exported function or block will have to be re-compiled (verified) from
the ISaGRAF Library Manager, to ensure that it can be used in a library environment.
Functions and function blocks of the library cannot use global variables.

A.3.3 Running the code generation tools

The commands of the "Make" menu are used to run the code generator, and to enter
options and additional data used when producing the application code. Refer to the
chapter "Using the code generator" in this document for further information about
these tools.

Make the application code
The "Make" command starts the project code generation. The options for target code
generation must be set correctly before running this command. Before generating the
target code, any program that is still not verified is checked to detect the syntax errors.
ISaGRAF includes an incremental compiler, which does not re-compile programs,
which have already been compiled.

Verify the selected program
The "Verify" command allows the user to verify the syntax of the program currently
selected in the list. When a program is verified, with no error detected, it is not re-
verified during the code generation until its contents or dependent defined words or
variables change.

Simulating a modification
The "Touch" command simulates a modification of each program so that all of them will
be compiled again during the next code generation.

Application run-time options
This command opens a dialog box where are entered the main run-time parameters for
the execution of the application. This includes the cycle timing programming, run time
error management, the starting mode and the hardware implementation of retained
variables. Refer to the chapter "Using the Code Generator" in this document for more
explanations about this command.

Compiler options
This command is used to set-up the options used by the ISaGRAF Code Generator to
produce and optimise target code. Refer to the chapter "Using the Code Generator" in
this document for more explanations about this command.

Defining resources
A "resource" is a user defined data (for example a file) which has to be merged with
the target code so it can be downloaded with it. Refer to the section "Using the Code
Generator" in this document for more explanations about the format of the resource
definition file.

A.3.4 Other ISaGRAF tools

The "Project" menu groups the commands that run ISaGRAF tools for the selected
project. Refer to the corresponding chapters in this document for more information
about these tools.

Wiring I/O variables
The "IO connection" command runs the ISaGRAF I/O variable connection editor. This
tool is used to establish the relationship between I/O variables declared in the project
dictionary and corresponding I/O hardware.

Running the cross reference editor
The "Cross references" command allows the user to calculate, to view or to print the
cross references of the project. The cross-references show the user all the
occurrences of each variable in the source code of the programs, in the entire project.
This function is very useful to detect an access to a variable or any global resource, or
to list all the occurrences of a global variable in the source code.

Entering the project descriptor
The "Project descriptor" command is used to edit the project text descriptor. This
document fully identifies the project from the others on the project list. The project
descriptor can also be used to record any remarks during the project lifetime. The
project descriptor is the one displayed in the Project Manager window.

Printing a complete document
The "Print project document" command allows the user to build and print a complete
document about the selected project. This document can group any component
(program, variable, parameters...) of the selected project. To build a specific (non-
complete) document, the user only has to define its table of contents.

History of modifications
This command opens a dialog box where is displayed the history of modifications for
the project. Refer to the chapter "Managing projects" in this document for more
explanations about this command.

A.3.5 Adding commands to the Tools menu

ISaGRAF provides the way to insert other commands in the "Tools" menu. User
defined commands to be added are described in "\ISAWIN\COM\ISA.MNU" text file.
You can add up to 10 commands. Comments may be inserted on any line, beginning
with ";" character. Each command is described on two lines of text, according to the
following syntax:

M=menu_string
C=command_line

The menu string is the text to be displayed in the "Tools" menu. The command line is
any MS-DOS or Windows executable, and can be completed with arguments. In
command line, you can use "%A" characters to replace the name of the open project,
and "%P" characters to replace the name of the selected program. The following
example runs "Notepad" to edit the selected program (to be used with ST and IL
programs):

M=Edit with Notepad

C=Notepad.exe \isawin\apl\%A\%P.lsf

A.3.6 Simulating and debugging the application

The command of the "Debug" menu are used to run the ISaGRAF graphic debugger,
either in simulation mode or in real connected mode.

Simulation
The "Simulate" command opens the debugger in simulation mode. In this mode,
another window appears, called the simulator. This command is very useful to test any
application when the target machine is unavailable. Starting the simulator closes the
Program Management window. The Program Management window is then re-opened in
debug mode after both debugger and simulation windows are opened. The simulator
cannot be started if the target code has not been generated. The simulator cannot be
started when child windows (editors, code generation, I/O connection...) are opened.
Each of them must be closed before running this command. This command is also
available from menus of ISaGRAF editors.

Real debugging
The "Debug" command opens the debugger main window, and closes the Program
Management window. The Program Management window is then re-opened in debug
mode as soon as communication is established between the debugger and the target
application. The debugger cannot be started if the target code has not been generated.
The debugger cannot be started when child windows (editors, code generation, I/O
connection...) are opened. Each of them must be closed before running this command.
This command is also available from menus of ISaGRAF editors.

Preparing the debug workspace
The "Debug / Workspace" command enables you to define a list of documents for
initial workspace. Such documents can be programs, SpotLight graphics, and lists of
variables. Graphics and lists of time diagrams from previous ISaGRAF versions are
also listed with project documents. Documents defined in the initial workspace are
automatically opened when simulation or On Line monitoring is launched.

The dialog box shows the existing documents of the project on the left, and documents
selected for the initial workspace on the right. Use ">>" and "<<" push buttons to move
documents from one list to the other. Each project has its own list of documents for
initial workspace.

Link set-up
The "Link set-up" command It enables the user to define the parameters of the link
used for communication between the debugger on the host PC and the target ISaGRAF
system.
The "Slave number" identifies the target ISaGRAF system or task. It can be from 1 to
255. Refer to the target supplier manual for the slave number of the target system used.
The "Communication port" identifies the hardware media between ISaGRAF
workbench and target. It can be either the name of a serial port, or "Ethernet", reserved
TCP-IP communication using the "Winsock" Version 1.1.
The "Time out" is the time left to the target system for its communication operations
between the end of a debugger question and the beginning of its response. This time is
set as a number in milliseconds. The "Retries" field is the number of automatic trials
the debugger executes for a communication operation before detecting a
communication error.

Serial link set-up
When a serial port (COM1..4) is selected, the "Set-up" button is used to access to
other serial link communication parameters.
The transmission baud rate, parity and format may be selected. When the "hardware"
choice is selected for "Flow Control", the ISaGRAF Workbench controls the CTS and
DSR lines to enable hardware handshaking during exchanges.

Ethernet link set-up
When "Ethernet" is selected as a communication port, the "Set-up" button is used to
enter the "Internet Address" and "Internet port" number, for TCP-IP communication.
These fields use the standard formats defined by the Socket interface. The Workbench
uses the WINSOCK.DLL Version 1.1 library for TCP-IP communications. This file must
be correctly installed on the hard disk. "1100" is the default port number used if not
specified when running the ISaGRAF target.

A.4 Using the SFC editor

The SFC language is used to describe operations of a sequential process. It uses a
simple graphic representation for the different steps of a process, and conditions that
enable the change of active steps. An SFC program is entered by using the ISaGRAF
graphic SFC editor. SFC is the core of the IEC 1131-3 standard. The other languages
usually describe the actions within the steps and the logical conditions for the
transitions. The ISaGRAF graphic SFC editor allows the user to enter complete SFC
programs. It combines graphic and text editing capabilities, thus allowing the entry of
both the SFC chart, and the corresponding actions and conditions.

A.4.1 SFC language main topics

The SFC language is used to represent sequential processes. It divides the process
cycle into a number of well-defined successive steps (self-contained situations),
separated by transitions. Refer to the ISaGRAF Languages Reference Manual for
more details on the SFC language.
SFC components are joined by oriented lines. The default orientation of a line is up to
down. These are the basic graphic components used to build an SFC chart:

........................Initial step

........................Step

........................Transition

........................Jump to a step

........................Macro step

........................Macro beginning step

........................Macro ending step

The SFC programming is usually separated into two different levels: The Level 1
shows the graphic chart, reference numbers of the steps and the transitions, and
comments attached to the steps and the transitions. The Level 2 is the ST or IL
programming of the actions within the steps, or the conditions attached to the
transitions. Actions or conditions may refer to sub-programs written in other languages
(FBD, LD, ST or IL). Below is an example of level 1 and level 2 programming:

10 Start mixing

Mixing done
11

10 Start mixing

Mixing done
11

MixLevel > 100;

Action (P):
MixLevel := 10;
End_action;

Level 1: Level 2:

The level 2 programming of a step is entered in a text editor. It can include action blocks
programmed in ST or IL. The level 2 programming of a transition can be entered either
in IL or ST text languages, or with Quick LD editor.

Divergences and convergences
Divergences and convergences are used to represent multiple links between steps
and transitions. Simple divergences or convergences represent different inclusive
possibilities between different sub parts of the process.

Single divergence (OR)
Warning: following transitions are not
implicitely exclusive

Single convergence (OR)

Double divergences represent parallel processes.

Double divergence (AND)

Double convergence (AND)

These are parallel
processes

Jump to a step
The SFC editor only allows the user to draw links in the up to down direction. A jump
to a step can be used to represent a link to an upper part of the chart. Following charts
are equivalent:

1

2

3

4

5

1

2

3

4

5

1

66

Jump to a transition is forbidden, and must be explicitly represented as a double (AND)
convergence.

Macro steps
A macro step is a unique representation of a stand-alone group of steps and
transitions. A macro step begins with a beginning step and terminates with an ending
step.

The detailed representation of a macro step must be described in the same SFC
program. The macro-step symbol must have the same reference number as the
macro beginning step. A macro step description may contain another macro step.

A.4.2 Entering an SFC chart

To draw an SFC chart, the user simply has to introduce the significant components of
the chart. All the single lines joining two elements (horizontally or vertically) are drawn
automatically by the SFC editor. To place an SFC component on the chart, the user has
to move the selection to appropriate location and select the type of the component in the
editor toolbar. The symbol is inserted at the current position. The following keyboard
sequences can also be used:

..................Insert an initial step

..................Insert a single step

..................Insert a transition

..................Insert a jump to a step

Insert an OR divergence or convergence / Add branches

Insert an AND divergence or convergence / Add branches

..................Insert a macro step

Insert begin or end step for the body of a macro step

(The " " symbol indicates a combination with SHIFT key)

The editing grid shows matrix cells. An editor option allows the user to show or hide
the grid during chart input. The grid is very useful for initial layout of SFC chart, or
selecting sub-parts of the chart. Use the "Options / Layout" command to display or
hide the grid.
The ISaGRAF SFC editor always shows the current position in the matrix. The focused
cell is marked in grey. The small square on its bottom right corner can be used to freely
resize the cells. The X/Y ratio of the cells can also be changed this way.

Creating a divergence or convergence
Divergences and convergences are always drawn from the left to the right. To draw a
divergence or a convergence, its left branches has to be placed on the chart area. The
type of drawing (simple or double) is set by selecting one of these buttons in the toolbar.

Insert an OR divergence or convergence / Add branches

Insert an AND divergence or convergence / Add branches

Adding branches to divergences
The start and stop position of each auxiliary branch is placed on the divergence or
convergence line using these buttons in the toolbar. The left corner of the divergence or
convergence must be present before inserting new branches. The right corners have
the same style (simple or double) as the main left corner. Right corners cannot be
placed if the main left corner has not been added.

Insert an OR divergence or convergence / Add branches

Insert an AND divergence or convergence / Add branches

Inserting a macro step
This button is used to insert a macro step in the main chart. The body of the macro step
must be entered elsewhere in the same SFC program.

 Body of a macro step

Macro steps must be described in the same SFC program as the main chart. A macro
step must start with a beginning step and stop with an ending step. The sub-chart
described as the macro implementation must be self-contained. The macro beginning
step must have the same reference as the macro-step symbol of the main branch.

A.4.3 Working on an existing SFC chart

You can use either the mouse or keyboards arrows to select a rectangle area in the
chart. The whole selected area is marked in grey. The commands of the "Edit" menu
can then used:

 Cut / copy / delete / paste commands
The following commands are available from the "Edit" menu when the "arrow" button is
selected in the editor toolbar:
CutMove selected rectangle from the screen to the SFC clipboard
Copy.....................Copy selected rectangle from the screen to the SFC clipboard
Delete...................Clear (delete) selected rectangle
Paste....................Insert contents SFC clipboard at the current position

The "Edit / Paste" copies SFC clipboard to the screen. Copy / Paste commands work
on both SFC chart and step/transition level 2 programming. It is also possible to copy a
chart in a program and paste it in another SFC program. Elements are inserted before
the currently selected position.

Move elements
When SFC elements are selected in the SFC chart, you can move them to another
location of the chart by dragging the selection with the mouse. While you drag the
selection, the initial location of selected elements is hatched.

The destination area for moved elements must be empty. No insertion is possible while
moving SFC symbols.

Renumbering steps and transitions
Each step or transition is identified by a logical number in the SFC chart. The "Edit /
Renumber" command allows the user to automatically set up numerically sequential
reference numbers for any of the steps and the transitions of the currently edited SFC
program. When a step number is changed, all the jumps to this step are automatically

updated with the new reference number. (This also applies to macro steps and
beginning steps)

Direct access to a step or transition
The "Edit / Go to" command allows the user to access an existing step or transition.
The scrolling position is automatically adapted so that the step or transition is visible.

Find and replace texts
The "Edit / Find Replace" command can be used to find or replace text strings in the
complete program (all steps and transitions). The Find/Replace dialog box is used to
enter a searched text and directly open the level 2 programming section where text
occurs.

A.4.4 Entering the level 2 programming

To enter the Level 2 text, the user must double click on the step or transition symbol.
The level 2 programming is displayed on the right of the SFC window. The separation
line between SFC chart and level 2 programming can be freely moved.

You can open one or two level 2 areas at the same time. The following commands are
available from keyboard, mouse or the "Edit" menu:

Keyboard Mouse "Edit" menu
Open in last default window Enter Double Click Edit level 2
Open in separate window Ctrl+Enter Ctrl + DoubleClick Edit Level 2

in separate
window

When two level 2 windows are visible, the separation between them can be freely
moved. The button on the right of the level 2 title bar is used to close a level 2 window.

The default language for Level 2 programming is ST (Structured Text). For transitions,
level 2 programming can also be entered with Quick LD editor. Use the "ST/LD" button
in level 2 title bar to change the active language. This command is valid only if the level
2 programming window is empty.

A single line edit box appears at the top of the level 2 window. It is used to enter a short
description text. This text will be displayed as an IEC comment in drawing of SFC
symbols. It is very useful as it is used by other commands such as "Go To..." and also
in the SFC printout to document SFC steps and transitions.

The "Options / Refresh" command can be used at any time when level 2 windows are
open to refresh the main SFC chart with modified level 2 programs.

Inserting a variable name
When programming in text language, press this button to select a variable declared in
the project dictionary and insert its name at the current position of the caret. When
programming in Quick LD, press this button to select the variable to be attached to the
selected contact or block I/O parameter.

Inserting a Pulse action block in step
When programming the level 2 of a step, press this button to insert the template of a
Pulse action block at the current position of the caret. Below is the format of a Pulse
action block:

Action (P) :
ST statement;
...

End_Action;

Pulse actions are instructions, which are executed only once when the step becomes
active. Refer to the ISaGRAF language reference for further details on SFC
programming.

Inserting a Non stored action block in step
When programming the level 2 of a step, press this button to insert the template of a
Non stored action block at the current position of the caret. Below is the format of a Non
stored action block:

Action (N) :
ST statement;
...

End_Action;

Non stored actions are instructions which are executed on every PLC cycle when the
step is active. Refer to the ISaGRAF language reference for further details on SFC
programming.

 New P0 and P1 action qualifiers
ISaGRAF supports new P0 and P1 action qualifiers. When programming the level 2 of
a step, press these buttons to insert the template of a P0 or P1 action block at the
current position of the caret. Below is the format of such blocks:

Action (P0) : Action (P1) :
ST statement; ST statement;

... ...
End_Action; End_Action;

P1 actions are instructions which are executed only once when the step becomes active
(same as Pulse). P0 actions are instructions, which are executed only once when the
step becomes inactive. Refer to the ISaGRAF language reference for further details on
SFC programming.

Boolean actions
Other text semantics are available to directly act on a boolean variable according to the
step activity. Such actions consist of attaching the step activity signal to an internal or
output boolean variable. This is the syntax of the basic boolean actions:

<boolean_variable> (N); assigns the step activity signal to the variable
<boolean_variable>; same effect (N attribute is optional)
/ <boolean_variable>; assigns the negation of the step activity signal

to the variable

Other features are available to set or reset a boolean variable, when the step becomes
active. This is the syntax of set and reset boolean actions:

<boolean_variable> (S); sets the variable to TRUE when the step activity
signal becomes TRUE

<boolean_variable> (R); resets the variable to FALSE when the step
activity signal becomes TRUE

SFC actions
Other text semantics are available to control the execution of a child SFC program. An
SFC action is a child SFC sequence, started or killed according to the condition of the
step activity signal. An SFC action can have the N (Non stored), S (Set), or R (Reset)
qualifier. This is the syntax of the basic SFC actions:

<child_program> (N); starts the child sequence when the step
becomes active, and kills the child sequence
when the step becomes inactive

<child_program>; same effect as the preceding syntax (N attribute
is optional)

<child_program> (S); starts the child sequence when the step
becomes active - nothing is done when the step
becomes inactive

<child_program> (R); kills the child sequence when the step becomes
active - nothing is done when the step becomes
inactive

The SFC sequence specified as an action must be an existing child SFC program of
the currently edited program, created with the ISaGRAF program manager.

Transitions written in ST

The level 2 of a transition is a boolean expression. To program it in ST language, just
enter the boolean condition according to the ST syntax. Optionally, a semicolon may be
added at the end of the expression.

Transitions written in Quick Ladder
Quick LD editor is available to program the level 2 condition of a transition. In this case,
the diagram is made of just one rung, with only one coil, which represents the transition.
The name of the transition is not repeated with the coil symbol. Below is an example of
transition condition programmed in Quick LD.

When programming in Quick LD, use the keyboard arrows to move the selection in the
programming logical grid, and then use the following shortcuts to insert symbols:
F2:........................ insert a contact after the selected symbol / initiate the rung
F3:........................ insert a contact before the selected symbol
F4:........................ insert a contact in parallel with the selected symbol
F6:........................ insert a block after the selected symbol
F7:........................ insert a block before the selected symbol
F8:........................ insert a block in parallel with the selected symbol
You can also click on the function key bar at the bottom of the level 2 window instead of
hitting function keys.

Hit RETURN when the selection is on a contact or a block I/O parameter to select a
variable or enter a constant value. Hit RETURN when the selection is on a function
block to select the type of the function block. You can also double click on a symbol for
the same effect.

Hit SPACE bar when a contact is selected to change the type of contact (direct,
negated or with pulse detection). Refer to the chapter "Using the Quick LD editor" in
this document for more details about Quick LD capabilities.

A.4.5 Using the SFC gallery

The ISaGRAF SFC editor manages an SFC gallery: it is a collection of SFC structures
that can be inserted in any SFC chart. Elements of the SFC gallery can optionally
embed the level 2 programming of steps and transitions. Use the following commands
of the "Tools" menu:

Copy to SFC gallery copy selected elements to SFC gallery
Paste from SFC gallery paste an SFC gallery element at the current location

When copying to SFC gallery (i.e. creating a new SFC gallery element), you can
optionally ask to embed level 2 programming of selected SFC symbols.

A.5 Using the Flow Chart editor

The ISaGRAF Flow Chart graphic editor allows the user to enter complete FC (Flow
Chart) programs, with actions and tests (decisions) programmed in either ST, IL or
Quick LD language. Flow Chart is a decision diagram, which can also be used to
describe sequential operations as it enables some advanced features such as non-
blocking backward jumps.

A.5.1 Basics of the FC language

Flow Chart (FC) is a graphic language used to describe sequential operations. A Flow
Chart diagram is composed of Actions and Tests. Between Actions and tests are
oriented links representing data flow. Below are graphic components of the Flow Chart
language:

Beginning of FC chart: A "begin" symbol must appear at the beginning of a Flow
Chart program. It is unique and cannot be omitted. It represents the initial state of the
chart when it is activated.

Ending of FC chart: An "end" symbol must appear at the end of a Flow Chart
program. It is unique and cannot be omitted. It is possible that no connection is drawn
to the "End" symbol (always looping chart), but "End" symbol is still drawn anyway at
the bottom of the chart. It represents the final state of the chart, when its execution has
been completed.

FC flow links: A flow link is a line that represents a flow between two points of the
diagram. A link is always terminated by an arrow. Two links cannot start from the same
source connection point.

FC actions: An action symbol represents actions to be performed. An action is
identified by a number and a name. Two different objects of the same chart cannot have
the same name or logical number. Programming language for an action can be ST, LD
or IL. An action is always connected with links, one arriving to it, one starting from it.

FC tests: A test represents a boolean condition. A test is identified by a number and a
name. According to the evaluation of attached ST, LD or IL expression, the flow is
directed to "YES" or "NO" path. When programmed in ST text, the expression may
optionally be followed by a semicolon. When programmed in LD, the unique coil
represents the condition value.

FC sub-program: The system enables the description of a hierarchised structure of
FC programs. FC programs are organised in a hierarchy tree. Each FC program can
call other FC programs. Such a program is called a child program of the FC program,
which calls it. FC programs, which call FC sub-programs, are called father program. FC
programs are linked together into a main hierarchy tree, using a "father - child" relation.
A sub-program symbol in a Flow Chart represents a call to a Flow Chart sub-program.

Execution of the calling FC program is suspended till the sub-program execution is
complete.

FC I/O specific action: An I/O specific action symbol represents actions to be
performed. As other actions, an I/O specific action is identified by a number and a
name. The same semantic is used on standard actions and I/O specific actions. The
aim of I/O specific actions is only to make the chart more readable and to give focus on
non-portable parts of the chart. Using I/O specific actions is an optional feature. I/O
specific blocks have exactly the same behaviour as standard actions.

FC connectors: Connectors are used to represent a link between two points of the
diagram without drawing it. A connector is represented as a circle and is connected to
the source of the flow. The drawing of the connector is completed, on the appropriate
side (depending on the direction of the data flow), by the identification of the target point
(generally the name of the target symbol). A connector always targets a defined Flow
Chart symbol. The destination symbol is identified by its logical number.

FC comments: A comment block contains text that has no sense for the semantic of
the chart. It can be inserted anywhere on a free space of the Flow Chart document
window, and is used to document the program.

A.5.2 Entering a Flow Chart

To enter a chart, you have to place elements (actions, decision tests, connectors...) in
the graphic area, and draw flow links between them.

Inserting objects
To insert an object in the diagram, select the corresponding button in the toolbar and
click in the graphic area, where you want to insert it. You can either put the element on
an empty area, or insert it in a flow by clicking on a flow link. Insertion on a link is
allowed for top to bottom vertical links only. You can insert the following basic elements:

........................action programmed in ST, IL or Quick LD

........................I/O specific action (highlights a particular non-portable action)

........................test (decision) programmed in ST, IL or Quick LD

........................connector

........................call to an FC sub-program

........................comment (description text)

The ISaGRAF Flow Chart editor also proposes you a list of classical Flow Chart
structures. Such structures can only be inserted on an existing flow link. They cannot
be put in an empty area:

........................If / Then / Else (binary selection)

........................Repeat until (waits for a condition)

........................While (loops while a condition is true)

Selecting objects
Selecting graphic objects is needed for most of the editing commands. The ISaGRAF
FC graphic editor enables the selection of one or more objects existing in the diagram
area. To select objects, the "select" (button with an arrow) choice must be checked in
the editor toolbar. To select one object, the user only has to click on its symbol.

To select a list of objects, drag the mouse in the diagram to draw a rectangle area. All
graphic objects in the selection rectangle are marked as "selected".

A selected object is drawn in dark blue colour, with little black squares around its
graphic symbol. It is also possible to add or remove one object to a multiple selection,
by clicking on its symbol with Shift or Ctrl key pressed.

By making a new selection, selection of all objects previously selected is removed. To
remove the existing selection, simply click with the mouse in an empty area, outside of
the rectangle which borders the selected objects.

For single selection, it is possible to use keyboard arrows to move selection from one
object to the other in the chart. Flow links can also be selected.

Inserting comments
Comments may be inserted anywhere in an empty part of the diagram. Comments have
no influence on the program execution. They allow a higher readability of the diagram.
To insert a comment block, select the corresponding button in the toolbar, and click in
the diagram where comment must be put. Double click on a comment to enter / change
its text. No special leading or trailing characters such as "(*" and "*)" are needed when
entering the text of a comment block. A comment block may be resized by dragging the
corners of its border when it is selected.

Drawing flow links
Select this button in the toolbar to draw a flow link between existing elements. A link
must always be drawn in the direction of the flow. First select a non-connected output
point of an FC element, and drag the mouse to the destination point to insert the link.
The destination point can either be the top (input point) of a non-connected FC element,
or any location on an existing link. Convergence points between links are shown with
small grey circles in the Flow Chart. Convergence points can also be selected and
moved in order to arrange the diagram.

Using connectors
The ISaGRAF Flow Chart editor enables the use of graphic connectors, as a
replacement of a visible flow link. Connectors can be very useful to avoid very long links
and increase chart readability. A connector cannot be used to establish a link with
another FC program.

A connector is put in the chart as other FC objects. It is represented by a circle
containing the numerical reference of targeted element (destination of the flow link). The
short description text of the target element is displayed close to the connector circle.

Moving objects
To move objects in the chart, you have to select them, and drag the mouse to move
them within the chart. You can either move a single element or a multiple selection.
Elements cannot be overlapped when moving them. Moving elements cannot be used to
connect them to an existing link.

When a single element (action, test...) is moved, the ISaGRAF Flow Chart editor
automatically moves with the selected element all objects placed below and connected
to it. This feature does not operate in the case of a multiple selection.

Resizing objects
Any graphic element of a flow apart from "Begin", "End" symbols and connectors can
be resized freely. To resize an element, you first have to select it. Then drag with the
mouse the small squares drawn on its border to change its size.

When an element is connected to a flow link, resizing it horizontally acts on both left and
right borders, so that the element is still correctly centred on the link when resized.

Swapping the outputs of a test
You can swap locations of YES / NO outputs on a test (decision). To do that, simply
double click on either "Yes" or "No" marks displayed close to the test symbol.

A.5.3 Working on an existing chart

The commands of the "Edit" menu are used to change or complete an existing
diagram. Most of these commands act on the elements currently selected in the
diagram.

Correcting a chart

The DEL key can be used to remove the selected elements. Pending links are deleted
with selected elements. Use "Edit / Undo" command to restore elements after a DEL
command. The DEL command can also be applied to a group of elements selected in
the diagram. The "Cut", "Copy", "Paste" commands of the "Edit" menu are used to
move or copy selected elements.

Find and replace
The "Edit / Find Replace" commands can be used to find or replace text strings in the
complete program (all actions and tests programmed in ST, IL or Quick LD). The
Find/Replace dialog box is used to enter a text to be searched and to directly open the
programming section where the text is found.

Direct access to an element
The "Edit Go to" command allows the user to access a graphic element existing in the
chart. The scrolling position is automatically adapted so that the element is visible. The
element, when reached, is selected.

Renumbering elements
The "Edit / Renumber" command is used to renumber elements of the Flow Chart.
Any FC element put in the chart is identified with a unique reference number. Reference
numbers are allocated by the editor each time new elements are inserted. The
"Renumber" allows you to re-adjust element numbering according to their location in
the chart. Growing numbering is performed from top to bottom and from left to right

A.5.4 Entering level 2 programs

To enter the level 2 program, the user must double click on the action or test symbol.
The level 2 programming is displayed on the right of the FC window. The separation line
between FC chart and level 2 programming can be freely moved. You can open one or
two level 2 areas at the same time. The following commands are available from
keyboard, mouse or the "Edit" menu:

Keyboard Mouse "Edit" menu
Open in last default window Enter Double Click Edit level 2
Open in separate window Ctrl+Enter Ctrl + DoubleClick Edit Level 2 in

separate window

When two level 2 windows are visible, the separation between them can be freely
moved. The button on the right of the level 2 title bar is used to close a level 2 window.

The default language for Level 2 programming is ST (Structured Text). The
programming language can also be IL or Quick LD. The name of the selected language
is displayed in a small box in the level 2 title bar. Run the "Options / Set Level 2
language" command from menus or click on that box to change the active language.
This command is valid only if the level 2 programming window is empty.

A single line edit box appears at the top of the level 2 window. It is used to enter a short
description text. This text will be displayed as an IEC comment in the drawing of FC
symbols. It is very useful as it is used by other commands such as "Go To..." and also
in the FC printout to document FC actions and tests.

The "Options / Refresh" command can be used at any time when level 2 windows are
open to refresh the main FC chart with modified level 2 programs.

A.5.5 Programming level 2 with Quick LD

Quick LD editor is available for level 2 programming. In the case of a decision test, the
LD diagram is made of just one rung, with only one coil, which represents the decision.
The name of the test is not repeated with the coil symbol. Below is an example of a test
programmed in Quick LD.

When programming in Quick LD, use the keyboard arrows to move the selection in the
programming logical grid, and then use the following shortcuts to insert symbols:
F2:........................ insert a contact after the selected symbol / initiate the rung
F3:........................ insert a contact before the selected symbol
F4:........................ insert a contact in parallel with the selected symbol
F5:........................add a coil in parallel with the selected one (not for tests)
F6:........................ insert a block after the selected symbol
F7:........................ insert a block before the selected symbol
F8:........................ insert a block in parallel with the selected symbol
F9:........................add a jump symbol in parallel with the selected coil (not for tests)

A jump leads to a rung name. The name of a rung can be entered by hitting ENTER
when selection is on the rung head. The ISaGRAF editor keeps the memory of the rung
labels you already entered, whether it has been specified for a rung name or a jump
operation. The "Jump/Label"' dialog box gives you the possibility either to enter a new
label, or to select an existing one. If you enter a new name, it will automatically be added
to the list. The "Remove" button is used to remove the selected name from the list. It

does not remove the label on the rung you selected in the diagram. To do this, just
press OK when the edit box is empty.

You can also press buttons in the LD toolbar instead of hitting function keys.

Hit ENTER when the selection is on a contact or a block I/O parameter to select a
variable or enter a constant value. Hit ENTER when the selection is on a function block
to select the type of the function block. You can also double click on a symbol for the
same effect.

Hit Control + SPACE bar when a contact is selected to change the type of contact or
coil (direct, negated). Refer to the chapter "Using the Quick LD editor" in this document
for more details about Quick LD capabilities.

A.5.6 Display options

The "Options / Layout" command opens a dialog box where are grouped all the
parameters and options concerning the editor workspace and the drawing of the
diagram. Use the check boxes in the "Workspace" group to display or hide editor
toolbars and status bar. Option of the "Document" group allow you to show or hide
points of the editing grid and to display chart either in black and white or with colours.

Use the "Zoom" button of the toolbar to change current zoom ratio. This command is
also available when working on a Quick LD program attached to an action or a test.

Use the "Grid" button of the toolbar to show or hide points of the editing grid. This
command is also available when working on a Quick LD program attached to an action
or a test.

Use the "Options / Font" command to select the name of the character font to be used
in all ISaGRAF documents. When called from an ST or IL block, you can specify size of
the font. When selecting font for a graphic view (FC or Quick LD), font style and size
are not relevant and do not need to be specified. ISaGRAF graphic editors always
calculate the font size according to the current zoom ratio.

A.6 Using the Quick LD editor

The LD language enables graphic representation of boolean expressions. Boolean
AND, OR, NOT operators are explicitly represented by the diagram topology. Boolean
input variables are attached to graphic contacts. Boolean output variables are attached
to graphic coils. The ISaGRAF Quick LD editor provides easy LD diagram entering
using either keyboard or mouse. Elements are automatically linked and arranged on
rungs by the Quick LD editor. No connection is drawn manually by the user. The Quick
LD editor also arranges rungs in the diagram so that the space filled by the diagram is
always optimised.

A.6.1 Basics of the LD language

An LD program is expressed as a list of rungs where contacts and coils are arranged.
Below are the basic components of an LD diagram:

Rung head (left power rail)
Each rung begins with a left power rail, which represents the initial "TRUE" state.
ISaGRAF Quick LD editor automatically creates the left power rail when the first contact
of the rung is placed by the user. Each rung may have a logical name, which can be
used as a label for jump instructions.

Contacts
A contact modifies the boolean data flow, according to the state of a boolean variable.
The name of the variable is displayed upon the contact symbol. The following types of
contacts are supported by ISaGRAF Quick LD editor:

......................direct contact

......................negated contact

......................contact with positive (rising) edge detection

......................contact with negative (falling) edge detection

Coils
A coil represents an action. The rung state (state of the link on the left of the coil) is
used to force a boolean variable. The name of the variable is displayed upon the coil
symbol. The following types of coils are supported by ISaGRAF Quick LD editor:

......................direct coil

......................negated coil

......................"set" action coil

......................"reset" action coil

......................coil with positive (rising) edge detection

......................coil with negative (falling) edge detection

Function blocks

A block in an LD diagram can represent a function, a function block, a sub-program or
an operator. Its first input and output parameters are always connected to the rung.
Other input and output parameters are literally written outside of the block rectangle.

Rung end (right power rail)
A rung ends with a right power rail. Using the Quick LD editor, the right power rail is
automatically inserted when a coil is placed by the user.

Jump symbol
A jump symbol always refers to a rung label, i.e. the name of a rung defined somewhere
in the same LD diagram. It is placed at the end of a rung. When the rung state is
TRUE, the execution of the diagram directly jumps to this target rung. Note that
backward jumps are dangerous as they may lead to a blocking of the PLC loop in some
cases.

Return symbol
A return symbol is placed at the end of a rung. It indicates that the execution of the
program must be stopped if the rung state is TRUE.

The "EN" input
On some operators, functions or function blocks, the first input does not have boolean
data type. As the first input must always be connected to the rung, another input is
automatically inserted at the first position, called "EN". The block is executed only if the
EN input is TRUE. Below is the example of a comparison operator, and the equivalent
code expressed in ST:

IF rung_state THEN
 q := (value1 > value 2);
ELSE
 q := FALSE;
END_IF;
(* continue rung with q state *)

The "ENO" output
On some operators, functions or function blocks, the first output does not have boolean
data type. As the first output must always be connected to the rung, another output is
automatically inserted at the first position, called "ENO". The ENO output always takes
the same state as the first input of the block. Below is an example with AVERAGE
function block, and the equivalent code expressed in ST:

AVERAGE(rung_state, Signal, 100);
OutSignal := AVERAGE.XOUT;
eno := rung_state;
(* continue rung with eno state *)

On some cases, both EN and ENO are required. Below is an example with an arithmetic
operator, and the equivalent code expressed in ST:

IF rung_state THEN
 result := (value1 + value2);
END_IF;
eno := rung_state;
(* continue rung with eno state *)

Limitations of Quick LD editor
The ISaGRAF Quick LD editor does not allow to continue a rung (insert other contacts
or coils) on the right of a coil. If several outputs have to be made on the same rung, the
corresponding coils must be drawn in parallel.

A.6.2 Entering an LD diagram

All the editing commands of the Quick LD editor may be achieved either with the
keyboard or with the mouse.

The editing grid
The LD diagram is entered in a logical matrix. Each cell of the matrix may contain up to
one LD symbol. Use the arrows of the keyboard, or click on a cell to move the current
selection. The selected cell is marked in reverse. For some cut/copy/paste operations, it
is possible to select several cells. To do that with the mouse, just drag the mouse
cursor in the diagram. With keyboard, use arrow keys with SHIFT key pressed.

Starting a new rung
To add a new rung to a diagram, move the selection after the last existing rung and
insert a contact (hit F2 or press the corresponding button in the LD toolbar). A new rung
with one contact and one coil is created.

Entering the rung comment
Each rung may be documented with up to two lines of text. To enter a rung comment
text, move the selection on the cell upon the rung and hit ENTER key, or double click on
this cell with the mouse:

Hit ENTER on this cell

Entering the rung label
Each rung may be identified by a name. This name can be used as a target label for
jump operations. To enter or change the label of a rung, move the selection on rung
head and hit ENTER key, or double click on this cell with the mouse:

Hit ENTER on this cell

The ISaGRAF Quick LD editor keeps the memory of the rung labels you already
entered, whether it has been specified for a rung name or a jump operation. The
"Jump/Label"' dialog box gives you the possibility either to enter a new label, or to select
an existing one.

If you enter a new name, it will automatically be added to the list. The "Remove" button
is used to remove the selected name from the list. It does not remove the label on the
rung you selected in the diagram. To do this, just press OK when the edit box is empty.

Inserting symbols on a rung
The insertion of symbols (contacts, coils, blocks...) on an existing rung is always made
according to the current selection. You have to select a valid cell position within the rung
and hit one of the following function keys to insert:
F2.........................a contact before the selected symbol (on the left)
F3.........................a contact after the selected symbol (on the right)
F4.........................a contact in parallel with the selected symbol
F6.........................a block before the selected symbol (on the left)
F7.........................a block after the selected symbol (on the right)
F8.........................a block in parallel with the selected symbol

The following commands are valid when the selection is on the rung output (coil):
F5.........................add a coil in parallel with the selected one
F9.........................add a "Jump" symbol in parallel with the selected one
Shift + F9add a "Return" symbol in parallel with the selected one

For parallel insertion (F4/F8), if several contacts of a rung are selected together, the
symbol is inserted in parallel with the group of selected elements. Below is an example:

To insert symbols in the diagram, you can also use the commands of the "Insert"
menu. With the mouse, you can click on the LD toolbar, on the type of symbol you want
to insert:

Entering symbols
To associate a variable symbol to a contact or a coil, select it and hit ENTER. With the
mouse, double click on the contact or coil. A variable selection box appears. Refer to
chapter "More about program editors" in this document for further information about
how to use this box. To associate a function, function block or operator to a block, hit
ENTER when the selection is on the inside its rectangle. To associate a variable symbol
to an input or output block parameter the selection must be on the corresponding
location, outside the rectangle of the block.

Dialog boxes including variable or block selection lists are normally used for text input. If
the "Manual keyboard input" mode is checked in the "Options" menu, variable
symbols and block names are entered directly in a single text edit box. Enter new text
and hit "Enter" key to validate it, or hit "Escape" key to exit modification and close the
text editing box. The text edit box used in "manual keyboard input" mode cannot be
closed with the mouse.

Changing the type of contacts and coils
The "Edit / Change coil/contact type" changes the type of the selected contact or
coil. A contact may be direct, negated, with positive or negative edge detection. A coil
may be direct, negated, set or reset, with positive or negative edge detection. Hitting the
SPACE bar has the same effect.

Inserting a rung in a diagram
The "Edit / Insert rung" command insert a new rung in the diagram, before the
selected one. The rung is initiated with one contact and one coil.

A.6.3 Working on an existing diagram

The commands of the "Edit" menu are used to change or complete an existing
diagram. Most of these commands act on the elements currently selected in the
diagram.

Correcting a diagram
The DEL key can be used to remove the selected elements. It is not possible to remove
a coil, a jump or return symbol when it is the only output of a rung. Use "Edit / Undo"
command to restore elements after a DEL command. The DEL command can also be
applied to a group of elements selected in the diagram. The DEL command can be
used when selection is on the rung comment text to reset it. The DEL command, used
when the selection is on the rung head, removes the entire rung.

Copying symbols
The "Cut", "Copy", "Paste" commands of the "Edit" menu are used to move or copy
selected elements. These commands do not act on rung comments. The "Edit / Paste
special" command gives you the choice to insert the pasted elements:
• before the selected element (on the left)
• after the selected element (on the right)
• in parallel with the selected element

Managing entire rungs
All editing commands (delete, copy, cut...) act on the entire rung if the selection is on
the rung header (left power rail). This provides an easy way to arrange rungs in the
diagram, just by moving the selection in the first column. It is also possible to extend the
selection vertically so that it includes several rung headers. In this case edition
commands may be applied to a list of entire rungs.

Find and replace
The "Edit / Find" and "Edit / Replace" menu commands are used to find and replace
texts in the diagram. Only complete names can be found. Search acts on contacts,
coils, block names, block parameters and run labels. It cannot be used to find a string in
a rung comment. The Replace command cannot be used to change the type of a block.
The research can be made upward or downward, starting at position of the current
selection. It "loops" when the limits of the diagram are reached. The following shortcuts
are also available for quick research of variable names:

ALT+F2 finds the next element with the same variable name as the element currently selected.
This feature can also be applied to function blocks and rung labels.

ALT+F5 finds the next coil with the same variable name as the element currently selected. This
feature is mainly used in debug mode, to quickly find out the rungs which forces a
suspicious variable.

A.6.4 Display options

The commands of the "Options" menu are used to customise the drawing of the LD
diagram on the screen, and to hide or display some types of information.

Rung comments
Use the "Options / Rung comments" command to hide or display the rung comments
in the whole diagram. Hiding the rung comments can be required to have a more
condensed view on a huge diagram, as each comment consumes one row in the editing
matrix. This option does not affect the contents of the existing rung comments, and can
be swapped at any time.

Names and aliases
Each variable, when associated to a contact, a coil or a block I/O parameter is identified
by its symbolic name. The ISaGRAF Quick LD editor also introduces the notion or
"alias" for each variable. The alias of the variable is the variable comment text,
truncated before the first ':' character, and limited to 16 characters. Below are
examples:

variable comment: alias:
short text short text
long text with no separator long text with n
short text: long description short text

Aliases have no effect on the execution of the LD diagram and should be considered as
comments for the syntactic point of view. A variable alias is automatically extracted from
the variable comment when the name is selected in the variable list. It cannot be
changed manually. Use the "Options / Contacts and coils" commands to select a
display mode for variable identification. The following modes are available:
• display only the variable names
• display only the variable aliases
• display both names and aliases

Quick LD editor does not automatically updates LD documents when variable aliases
are changed in the dictionary. Use the "Options / Contacts and coils / Update
aliases" command to update all aliases in edited diagram. You can also set the
"Always update on Open" option from "Options / Contacts and coils" to ask
ISaGRAF to automatically update all used aliases each time a Quick LD program is
open. Warning: Setting this option may significantly increase the time spent to open a
program.

Drawing options
The "Options / Layout" command opens a dialog box where are grouped all the
parameters and options concerning the editor workspace and the drawing of the graphic
LD diagram.
Use the check boxes in the "Workspace" group to display or hide editor tool bar, status
bar and LD toolbar. Options of the "Document" group allow you to show or hide points
of the editing grid, and to enable/disable the use of colours for the drawing.

Options of the "Zoom" group allow you to select a main zoom ratio. You can also use
the "zoom" button in the editor toolbar to swap between default zoom ratios.

You can also customise the X/Y aspect ratio of cells in the editing grid. This last option
can be used to reduce the default cell width, if you commonly use short names for
variables. You can also use the "width" button in the editor toolbar to change the X/Y
aspect ratio without entering the Layout dialog box.

Use the "Options / Font" command to select the name of the character font to be used
in all ISaGRAF graphic documents. When selecting font, font style and size are not
relevant and do not need to be specified. ISaGRAF graphic editors always calculate the
font size according to selected zoom ratio.

A.7 Using the FBD/LD editor

The ISaGRAF FBD/LD graphic editor allows the user to enter complete FBD programs,
which may includes parts in LD. It combines graphic and text-editing capabilities, so
both diagrams and corresponding inputs and outputs can be entered. As this editor is
more dedicated to FBD language, pure LD diagrams should rather be entered using the
ISaGRAF Quick LQ editor.

A.7.1 Basics of the FBD/LD languages

The FBD language is a graphic representation of many different types of equations.
Operators are represented by rectangular function boxes. Function inputs are
connected to the left side of the box. Function outputs are connected to the right side.
Diagram inputs and outputs (variables) are connected to the function boxes with
logical links. An output of a function box may be connected to the input of another box.

The LD language enables graphic representation of boolean expressions. Boolean
AND, OR, NOT operators are explicitly represented by the diagram topology. Boolean
input variables are attached to graphic contacts. Boolean output variables are attached
to graphic coils. Contacts and coils are connected together and to left and right power
rails by horizontal lines. Each line segment has a boolean state of FALSE or TRUE.
The boolean state is the same for all the segments directly linked together. Any
horizontal line connected to the left vertical power rail has the TRUE state.

LD and FBD diagrams are always interpreted from the left to the right, and from the top
to the bottom. Refer to the ISaGRAF Language reference Manual for more details about
LD and FBD languages. These are the basic graphic components of the LD and FBD
languages, such as supported by the FBD/LD editor:

Left power rail
Rungs must be connected on the left to a left power rail, which represents the initial
"TRUE" state. ISaGRAF FBD editor also allows connecting any boolean symbol to a left
power rail.

Right power rail
Coils may be connected on the right to a right power rail. This is an optional feature
when using the ISaGRAF FBD/LD editor. If a coil is not connected on the right, it
includes a right power rail in its own drawing.

LD vertical "OR" connection
LD vertical connection accepts several connections on the left and several connections
on the right. Each connection on the right is equal to the OR combination of the
connections on the left.

Contacts

A contact modifies the boolean data flow, according to the state of a boolean variable.
The name of the variable is displayed upon the contact symbol. The following types of
contacts are supported by ISaGRAF FBD/LD editor:

......................direct contact

......................negated contact

......................contact with positive (rising) edge detection

......................contact with negative (falling) edge detection

Coils
A coil represents an action. It must be connected on the left to a boolean symbol such
as a contact. The name of the variable is displayed upon the coil symbol. The following
types of coils are supported by ISaGRAF FBD/LD editor:

......................direct coil

......................negated coil

......................"set" action coil

......................"reset" action coil

Function blocks
A block in an FBD diagram can represent a function, a function block, a sub-program or
an operator. Inputs and outputs must be connected to variables, contacts or coils, or
other block inputs or outputs. Formal parameter names are displayed inside of the block
rectangle.

Labels
Labels can be placed everywhere in the diagram. Labels are used as targets for jump
instructions, to change the execution order in the diagram. Labels are not connected to
other elements. It is highly recommended to place labels on the left of the diagram, in
order to increase the diagram readability.

Jumps
A jump symbol always refers to a label placed elsewhere in the diagram. Its left
connection must be linked to a boolean point. When the left connection is TRUE, the
execution of the diagram directly jumps to this target label. Note that backward jumps
are dangerous as they may lead to a blocking of the PLC loop in some cases.

Return symbol
A return symbol is connected to a boolean point. It indicates that the execution of the
program must be stopped if the rung state is TRUE.

Variables

Variables in the diagram are represented inside small rectangles, connected on the left
or on the right to other elements of the diagram.

Connection links
Connection links are drawn between elements put in the diagram. Links are always
drawn from an output to an input point (in the direction of the data flow).

Connection links with boolean negation
Some boolean links are represented with a small circle on their right extremity. This
represent a boolean negation of the information transported by the link.

User defined corners
User defined points may be defined on links. They allow the user to manually control the
routing of a link. If no corner is placed, the ISaGRAF FBD/LD editor uses a default
routing algorithm.

A.7.2 Entering an FBD diagram

To enter a diagram, you have to place elements (blocks, variables, contacts, coils...) in
the graphic area, and draw links between them.

Inserting objects
To insert an object in the diagram, select the corresponding button in the toolbar and
click in the graphic area, where you want to insert it.

Selecting objects
Selecting graphic objects is needed for most of the editing commands. The ISaGRAF
LD/FBD graphic editor enables the selection of one or more existing objects in the
diagram area. To select objects, the "select" (button with an arrow) choice must be
checked in the editor toolbar. To select one object, the user only has to click on its
symbol. To select a list of objects, drag the mouse in the diagram and select a rectangle
area. All the graphic objects that intersect the selection rectangle are marked as
"selected". A selected object is drawn with little black squares around its graphic
symbol. By making a new selection, all previously selected objects are unselected. To
remove the existing selection, simply click with the mouse on an empty area, outside of
the rectangle which borders the selected objects.

Inserting comments
Comments may be inserted anywhere in the diagram. Comments have no influence on
the program execution. They allow a higher readability of the diagram. To insert a
comment block, select this button in the toolbar, and drag the mouse to select the
rectangle area where comment must be drawn. Then enter the text of the comment. No
special leading or trailing characters such as "(*" and "*)" are needed when entering the
text of a comment block. A comment block may be resized by dragging the corners of
its border when it is selected.

Moving objects

To move objects in the diagram, you have to select them, and drag the mouse to move
the selected area in the diagram. To move connected objects, the user simply has to
move the graphic symbols put on the diagram. The ISaGRAF LD/FBD editor will
automatically redraw the connection lines between the objects that were moved, based
on their new location.

 Drawing links
Select one of these buttons in the toolbar to draw a link between connection points of
existing elements. If you draw a link from a connection point to an empty location in the
diagram, a user-defined corner automatically terminates it, so that you can continue
drawing another segment.

Changing link drawing
The "Tools / Move line" command is used when a link is selected in the diagram to
change its automatic routing. This command has no effect when the link is connected to
a user-defined corner. When a link is drawn as three segments, this command changes
the position of the second segment. Below are examples:

Changing the type of a link
You can easily change the type of link (with or without Boolean negation) by double
clicking with the mouse on its right extremity.

Drawing LD rungs
To draw a new LD rung, first insert the left power rail. Then place a coil: it will be
automatically linked to the power rail. Other contacts and vertical OR connections may
be directly inserted on the rung line, without drawing any new connection link.
When a new LD contact or coil is inserted in an empty space of the editing area, the
new horizontal rung line is automatically drawn from the new inserted element to the
existing power rails on the left and on the right. This line is not automatically drawn if the
new contact or coil is not placed between power rails. The new inserted contact or coil
can then be freely moved on the drawn rung. The horizontal lines created by the editor
while inserting an LD contact or coil symbol can be selected and deleted. You can insert
a new LD contact or coil symbol on the horizontal line of an existing rung. The editor
automatically cuts the rungs and connects it to the left and right connection points of the
new inserted contact or coil.

Multiple connections
A multiple connection can be created on the right of any output point. It means that the
information is broadcasted to several other points in the diagram. The same state is
propagated on each extremity on the right. The number of lines drawn at the right of an
output connection point is not limited. Two connection lines cannot have their right
extremity connected on the same input point, except for the following LD symbols:

........................right power rail

........................multiple connection on the left (OR) operator
These LD symbols can have an unlimited number of inputs.

A.7.3 Working on an existing diagram

The commands of the "Edit" menu are used to change or complete an existing
diagram. Most of these commands act on the elements currently selected in the
diagram.

Correcting a diagram
The DEL key can be used to remove the selected elements. Pending links are deleted
with selected elements. Use "Edit / Undo" command to restore elements after a DEL
command. The DEL command can also be applied to a group of elements selected in
the diagram. The "Cut", "Copy", "Paste" commands of the "Edit" menu are used to
move or copy selected elements.

Find and replace
The "Edit / Find" and "Edit / Replace" menu commands are used to find and replace
texts in the diagram. Only complete names can be found. Research acts on contacts,
coils, block names, variables and labels. It cannot be used to find a string in a comment
text. The Replace command cannot be used to change the name of a block. The
research can be made upward or downward, starting at the current selection position. It
"loops" when the limits of the diagram are reached.

Displaying the execution order
When an FBD diagram includes backward loops, the execution order cannot follow the
single left to right / top to bottom method. In order to avoid confusion, use the "Tools /
Show execution order" command or press Control + F1 keys to display the execution
order that will be used at compiling time. Tags numbered from 1 to N are displayed
close to symbols that lead to an action (coils, set variables and function blocks).

Entering symbols and texts
Double click with the mouse on an element to enter the associated symbol or text. This
applies to variables, contacts and coils, comment texts and labels. When used on a
contact or coil, this also allows to change its type (direct, negated...).

Dialog boxes including variable or block selection lists are normally used for text input. If
the "Manual keyboard input" mode is checked in the "Options" menu, variable
symbols and block names are entered directly in a single text edit box. Enter new text
and hit "Enter" key to validate it, or hit "Escape" key to exit modification and close the
text editing box. The text edit box used in "manual keyboard input" mode cannot be
closed with the mouse.

If the "Auto input" mode is checked in the "Options" menu, the variable symbol must
be entered immediately each time a new contact or coil is inserted. The symbol must
always be entered immediately when a variable or label is inserted.

Selecting function block type

Double click with the mouse on a block is used to change its type. The block type is
selected from the list of available operators, functions and function blocks. This
command also allows changing the number of input points in the case of a commutative
operator. (e.g. AND, OR, ADD, MUL...)

Getting free space
When you press the right button of the mouse in the FBD drawing area, a popup menu
is displayed. It contains the following commands that can be used to insert or remove
free space at the location of the mouse cursor:

Insert rows:This command inserts horizontal free space, made of 4 rows
according to the grid step, starting at the position of the mouse
cursor where popup menu is open.

Delete rows:........This command removes unused horizontal space (rows) starting at
the position of the mouse cursor where popup menu is open. This
command cannot be used to remove FBD elements.

When popup menu is open, a grey line in the FBD drawing area indicates where empty
space will be inserted or removed.

A.7.4 Display options

The commands of the "Options" menu are used to customise the drawing of the FBD
diagram on the screen.

Layout customisation

The "Options / Layout" command opens a dialog box where are grouped all the
parameters and options concerning the editor workspace and the drawing of the graphic
diagram. Use the check boxes in the "Workspace" group to display or hide editor
toolbars and status bar. Option of the "Document" group allows you to show or hide
points of the editing grid.

Options of the "Zoom" group allow you to select a main zoom ratio. You can also use
the "zoom" button in the editor toolbar to swap between default zoom ratios.

Use the "Options / Font" command to select the name of the character font to be used
in all ISaGRAF graphic documents. When selecting font, font style and size are not
relevant and do not need to be specified. ISaGRAF graphic editors always calculate the
font size according to selected zoom ratio.

A.7.5 Styles and modification tracking

The ISaGRAF LD/FBD editor enables you to assign a graphic style to any component
of an LD/FBD diagram. A style is mainly defined as a special diagram colouring. But
ISaGRAF also uses styles to enable modification tracking in diagrams for version
control purpose.

Note that styles are not visible during simulation or on-line debug, as colours (red and
blue) are used in that mode to highlight TRUE / FALSE states of spied variables.

Predefined styles
The following styles are pre-defined:

NormalDefault drawing (black). For modification tracking, "normal" style
indicates that elements having that style are part of the original
diagram. "Normal" style elements are normally scanned during
execution.

Modified..............Elements marked as "modified" are painted in pink. For modification
tracking, the "modified" style is used to highlight elements that have
been added or changed after the original release of the diagram.
"Modified" style elements are normally scanned during execution.

Deleted................Elements marked as "deleted" are painted in grey, with dashed lines.
Such elements are not taken into account for the execution of the
diagram. This style is used to keep a track of elements removed after
the original release when version control is required.

CustomIn addition to predefined style, ISaGRAF LD/FBD editor allows you to
select any colour to be applied to a part of the diagram. Such
elements are considered as having a "Custom" style. The use of
"Custom" style has no effect on the diagram execution at run time.

Use the commands of "Style" sub-menu in "Edit" menu to manually apply a style to
selected elements.

Modification tracking
The use of styles and the availability of the "Deleted" style allow automatic modification
tracking in an existing diagram. Use the "Mark modifications" command in
"Edit/Style" menu to enable or disable modification tracking.
When the "Mark modifications" option is set, all elements changed in or added to the
diagram are automatically set with "Modified" style. When an element is deleted, using
"Delete" or "Cut" commands, they are not visually removed from the diagram, but simply
marked with "Deleted" style". This enables the user to automatically keep a trace of all
modifications entered in the diagram.
Use the "Edit/Style/Remove all deleted items" to actually remove all elements
marked with "Deleted" style from the LD/FBD diagram. This command does not take
care of the current selection, and always applies to the entire diagram.
To "restore" one element marked with the "Deleted" style, select the desired element
and apply to it the "Normal" style, the "Modified" style or any "Custom" style. Such
operation may lead to invalid connections (more than one link connected to the same
input point) that will be detected during next program verification.

A.8 Using the text editor

This chapter only describes features and commands of the ISaGRAF text editor,
particularly when used to enter the source code of ST and IL programs.

A.8.1 Editing commands

The commands of the "Edit" menu are used to work on the edited text. Most of these
commands act on the characters currently selected in the diagram, or perform an action
at the current location of the caret.

 Cut and paste
The DEL key can be used to remove the selected text. Use "Edit / Undo" command to
restore elements after a DEL command. The "Cut", "Copy", "Paste" commands of the
"Edit" menu are used to move or copy text in the program, or to insert pieces of texts
copied in the clipboard by other applications.

Find and replace
The "Edit / Find" and "Edit / Replace" menu commands are used to find and replace
texts in the program. Any character string can be found. Research can be performed
upward or backward, starting at the current location of the caret. It does not "loops"
when the limits of the program are reached.

Go to line
The "Edit / Go to line" command is used to move the caret to a specific line number.
This can be very useful to have access to a line with an error detected by the ISaGRAF
compiler in an ST or IL program, and referenced by a line number.

Insert symbol from dictionary
Use the "Edit / Insert variable" command to insert at the caret position the symbol of a
variable or object declared in the project dictionary. Symbol is selected through the
common variable selection box described in chapter "More about program editors" in
this document.

Insert file
The "Edit / Insert file" command inserts the whole contents of a file at the current
location of the caret. Note that only pure ASCII text files can be handled by this
command.

A.8.2 Options

The commands of the "Options" menu are used to display or hide editor toolbars, and
select the character font. The selected character font will be used for any text editing in
all ISaGRAF Workbench.

When used to enter the source code of an ST / IL program, the "Options / Show
keywords" command is used to show or hide a toolbox that groups the most common
keywords of ST or IL language. Click on a button in the toolbar to insert the
corresponding keyword or operator at the current location of the caret.

A.9 More about program editors

This chapter contains useful information about editing features which are common to all
the ISaGRAF program editors. This mainly concerns links with other ISaGRAF tools
and common ISaGRAF dialog boxes.

A.9.1 Calling other ISaGRAF tools

Verify (compile) the program
The "File / Verify" command runs the ISaGRAF code generator to verify the
programming syntax of the currently edited program. In case of SFC language, both
level 1 and 2 are checked. When syntax verification is complete, the code generator
window must be closed to continue work on the program. If there is only one program in
the application (the edited one) the application code is generated if no syntax error is
detected. The "Options / Compiling options" command is used to set compiling and
optimising parameters. Refer to chapter "Using the code generator" in this document for
further information about compiling and code generation.

 Simulate or debug the application
The "File / Simulate" and "File / Debug" commands run the ISaGRAF graphic
debugger either in simulation or real connected mode, and re-opens the edited SFC
program in debug mode. Used in debug mode, no modification can be entered in the
program.

Editing the dictionary of variables
The "File / Dictionary" command is used to edit the dictionary of variables for the
current application and the current program. It also contains the entry points to edit the
user-defined words. The local declarations or defined words relate to the currently
edited program.

A.9.2 Parameters of the program

When the edited program is a function, a function block or a sub-program, the "File /
Parameters" command is used to define its calling and return parameters. This
command has no effect if the edited program is an SFC or top level program from
section Begin or End.

Sub-programs, functions or function blocks may have up to 32 parameters (input or
output). A function or sub-program always has one (and only one) return parameter,
which must have the same name as the function, in order to conform to ST language
writing conventions. The following dialog box is used to describe the parameters of the
sub program:

The list in the upper left side of the window shows the parameters, in the order of the
calling model: first the calling parameters, last the return parameters. The lower part of
the window shows the detailed description of the parameter currently selected in the list.
Any of the ISaGRAF data types may be used for a parameter. The return parameters
must be located after calling parameters in the list. Naming parameters must conform to
the following rules:
• the length of the name cannot exceed 16 characters
• the first character must be a letter
• the following characters must be letters, digits or underscore character
• naming is case insensitive

The "Insert" command is used to insert a new parameter before the selected
parameter. The "Delete" command is used to erase the selected parameter. The
"Arrange" command automatically rearranges (sorts) the parameters, so that the return
parameters are put at the end of the list.

A.9.3 Other commands of the "File" menu

The following commands are available in the "File" menu of all program editors:

Open another program
The "File / Open" command allows the user to close the currently edited program and
start editing another program of the current project with the same language. This
function cannot be used to edit a program written in another language. The new
selected program replaces the current one in the editing window.

Printing the program
The "File / Print" command outputs the edited program on printer. This command
automatically runs the ISaGRAF document generator to printout the edited program and
attached local variables.

For some graphic programs (SFC, FBD and Quick LD) You can also use the "Edit /
Copy drawing" command to copy in the clipboard the drawing of the chart in metafile
format, so that it can be pasted in other applications such as word processors. For SFC
programs, only the level 1 information (chart, numbering and level 1 comments) appears
on the copied metafile.

A.9.4 Updating the program diary

The diary file attached to the edited program may be manually entered using the "File /
Diary" command. The diary file is automatically updated with syntax checking output
messages each time the program is compiled. Compiling outputs are completed with
the compiling date / time stamp.

If the "Update diary" mode is selected in the "Options" menu of program editors, the
following dialog box is opened each time the program is saved on disk.

If OK button is pressed, the entered text note is then stored at the end of the diary file
with current date / time stamp. This feature is very useful for maintenance of complete
programs, as it provides useful help about the program life cycle.

A.9.5 Selecting a variable from dictionary

When editing a text program (ST or IL) the "Edit / Insert variable" allows the selection
of a declared variable name to be inserted at the current position of the caret. When
editing LD or FBD programs, variable selection is required for the description of
contacts, coils, block I/O parameters or FBD variable boxes. In both cases, the
following dialog box is open to select a declared variable:

The "Scope" selection box is used to select between global and local variables. The
selection box on the right allows the selection of the data type. Small icons beside the
type selection box are buttons that can be used as shortcuts to select most current data
types:

........................Boolean

........................Integer / Real

........................Timer

........................Message

To select a variable, click on its name in the list. Its name and comment are then
displayed on the top of the list. Then press the "OK" button to confirm its selection. It is
also possible to directly enter a variable name in the edit control without using the list.

A.9.6 The output window

The following commands are available in the Tools menu of all language editors. They
are used to display information in a small text list at the bottom of the editing window,
and use it for program browsing.

"Show compiler output" display in the output window the error messages
from the last compiling of the edited program.

"Find in… " find occurrences of a text in the whole edited
program, and list them in the output window. For
SFC and FC languages, this command
searches in all level 2 programs.

"Hide output window" close the output list window

When error messages or occurrences are displayed in the output window, double click
on a line to directly move selection to the corresponding location. For SFC and FC
languages, this command opens corresponding level 2 programming window.

A.10 Using the dictionary editor

The ISaGRAF dictionary is an editing tool for the declaration of the internal variables,
I/O variables, function block instances, and "defined words" of the application. The
dictionary groups together the declared variables and function block instances of the
application, and the words defined as constant strings.
Variables, function blocks and defined words must be declared in the dictionary before
using them in source code. Variables and defined words can be used with any of the
automation languages: SFC, FBD, LD, ST and IL. Function blocks used in FBD
language do not have to be declared, because the ISaGRAF FBD and Quick LD editors
automatically declare the instances of the used blocks.

Variables
The variables are sorted according to their range and type. Only variables of the same
type and the same range can be entered on the same input grid. These are basic
ranges for variables:

 GLOBALcan be used by any program of the current project

 LOCALcan be used by only one program

These are basic types of variables:

 BOOLEAN.....true/false binary values

 ANALOGreal or integer values

 TIMERtime values

 MESSAGEcharacter strings

A variable is identified by a name, a comment, an attribute, a network address and other
specific fields. Here are the basic variable attributes:

INTERNALmemory variable
INPUTvariable linked to an input device
OUTPUT..............variable linked to an output device
CONSTANT.........read only internal variable (with initial value)

Note: Timers are always internal variables. Input and Output variables always have the
GLOBAL range.

Defined words
A defined word is an alias that can be used in any language to replace a text string. The
replaced text can be a variable name, a constant expression or a complex expression.
Defined words are sorted according to their range. Only defined words of the same type
and the same range can be entered on the same input grid. Here are basic ranges:

 COMMONcan be used by any program of any project

 GLOBALcan be used by any program of the current project

 LOCALcan be used by only one program

A defined word is identified by a name, a well-defined block of ST text equivalence and
a free comment.

Function block instances
The instances of the function blocks used in the ST and IL languages must be declared
in the dictionary. Because a function block has internal "hidden" data, each copy of a
function block must be identified. The following example shows the function block
"R_TRIG" (rising edge detection) defined in the library, used for edge detection on
different variables. Each copy of the block must be identified by a unique name. Naming
the type of block and definition of its parameters is made by using the library manager:

Block name: R_TRIG
Parameters: Input=CLK

Output=Q

Naming the instances is made by using the dictionary editor:

Instance name: TRIG_B1 Block name: R_TRIG
Instance name: TRIG_B2 Block name: R_TRIG

The declared instances may be used in ST programs:

TRIG_B1 (b1);
edge_b1 := TRIG_B1.Q; (* b1 variable edge detection *)
TRIG_B2 (b2);
edge_b2 := TRIG_B2.Q; (* b2 variable edge detection *)

Declared function block instances may be GLOBAL (known by any program in the
project), or LOCAL to one program. Function blocks used in FBD or LD languages do
not have to be declared, because the ISaGRAF FBD editor automatically declares the
instances of the used blocks.

(* the function blocks always have the name of the block defined in the library.
The ISaGRAF FBD and Quick LD editors automatically declare an instance each
time a block is inserted in the diagram *)

Function block instances automatically declared by the FBD and Quick LD editors are
always LOCAL to the edited program.

Network addresses

Network addresses are optional. A variable with a non-zero network address can be
spied by an external system (for example a process visualisation system) at run time.
More generally, the network address provides an identifying mechanism for each run
time communication system that cannot handle symbolic names. A network address
may be entered for each variable, during its complete description, when the variable is
created or modified.

A.10.1 The dictionary main window

The dictionary editing window shows a list of variables with same type and range. The
type and range of edited variables is always displayed in the title bar.

The editing window shows only main fields of variable description: name, attribute and
network address, and text comment. The full description of the selected variable is
always displayed in the status bar. Use the following buttons in the toolbar to select the
range of variable to be edited:

COMMON.................. can be used by any program of any project

GLOBAL.................... can be used by any program of the current project

LOCAL can be used by only one program

Use the "Tab" control displayed with title bar to select the type of object to be edited:

Use the text-input field on the left of the toolbar to search for a variable prefix name. In
this case, research is processed on the entire list, from the beginning, based on the
current selection. The "Edit / Find" command is also available to search a text string in
variable names and comments, and to move the selection to this variable. Search is
always case insensitive.

A.10.2 Managing variables

The available "Files" menu commands work on the entire selected class of variables,
function block instances or defined words. Use the "Other" command to select the type
and range of objects to be edited.

Printing variables
Use the "Files / Print" command to print the currently edited list of variables or defined
words, on a standard Windows™ printer device. Printing is made using the ISaGRAF
document generator. The printout includes the complete description of each variable or
defined word of the currently edited type.

Creating new variables

The "Edit / New" command allows the user to create new variables, function block
instances or defined words for the selected range and type. New variables are inserted
just before the variable currently pointed to by the selection bar. When this command is
run, an input box is opened to enter the variable description. When the description is
complete, pressing the "Store" button puts it onto the list. The input box is automatically
re-opened, so the user can enter other variables with the same "Edit" command.
Pressing the "Cancel" button of the dialog box breaks the variable creation process.

Modifying existing variables
The "Edit" command of the "Edit" menu allows the user to modify the description of the
variable currently pointed at by the selection bar. When this command is run, an input
box is opened to modify the variable description. When description is complete,
pressing the "Store" button enables modification. The user also can press "Next" and
"Previous" buttons to extend the modification command to adjoining variables.
Pressing the "Cancel" button closes the dialog box without storing any modification.

 Cut and paste
The ISaGRAF dictionary editing tool enables multiple-line selection. Many commands
are available to work on the currently edited list of variables. Below are available "Edit"
menu commands:

COPYCopy the selected group of variables to the dictionary clipboard
CUTCopy the selected group of variables and remove it from the edited

list
CLEARRemove the selected group of variables from the edited list
PASTE.................Insert the dictionary clipboard before the selected variable

Copy/Cut/Paste functions can be used from one list of variables to another. They
cannot be used between list of different object types.

Sorting variables
The "Tools / Sort" command sorts the variables or defined words of the currently
edited list. The sorting order is given by the attributes of the variables:
• first the internal variables
• then the input variables
• finally the output variables
Variables with the same attribute are sorted into alphabetical order. Defined words are
always sorted into alphabetical order.

Setting network addresses
Network addresses are optional. A variable with a non-zero network address can be
spied by an external system (for example a process visualisation system) at run time. A
network address may be entered for each variable, during its complete description,
when the variable is created or modified. The "Tools / Renumber addresses"
command allows the user to set up network addresses of an entire group of variables.
When this command is run, it acts on the group of variables currently selected on the
list. Entering a hexadecimal basis address (address for the first variable of the group)
results in network addresses of the variables of the group being set with consecutive

addresses. Entering a null basis address resets to zero the network address of all the
selected variables.

Importing boolean "true/false" strings
When editing defined words, the "Tools / Import true/false definitions" allows the
user to automatically define as language keywords the strings attached to boolean
variables to represent TRUE and FALSE states. Such strings are normally defined for
debug formatting. They have to be specified as defined words if they are to be used in
programs. This command searches for boolean true/false strings in the declarations
with the same range as the one currently selected for the editing of the defined words.

A.10.3 Description of objects

A complete description must be entered for each variable, function block instance, or
defined word. Description fields are different for each type of object. The following fields
are common for any type of variables:

Name................................Name of the variable: first character must be a letter,
following characters must be letters, digits or '_'.

Network address.............Hexadecimal network address (optional). When this field is
non-zero, the variable can be spied by external systems at
run time.

CommentFree comment for variable description.
Retain...............................This option indicates that the variable must be saved on

backup memory.

These are other description fields for a boolean variable:

Attribute...........................Specifies an internal, constant, input or output variable.
"False" string..................String used for false value at debug time.
"True" stringString used for true value at debug time.
Set to true at initThe initial value is TRUE if this option is checked, otherwise

the initial value is FALSE.

These are other description fields for an integer or real variable:

Attribute...........................Specifies an internal, constant, input or output variable.
FormatSpecifies an integer or real (floating) variable. Display format

used during debug can be selected.
Unit string........................String used to identify the physical unit at debug time.
Conversion......................Name of the conversion table or conversion function

attached to the variable (for input or output variables only)
Initial value...................... Initial value of the variable (must have the same format as

the variable). If not specified, the initial value is 0.

These are other description fields for a timer variable:

Attribute...........................Specifies an internal or constant variable.

Initial value...................... Initial value of the variable (time value). If not specified, the
initial value is time#0s.

These are other description fields for a message variable:

Attribute...........................Specifies an internal, constant, input or output variable.
Maximum Length............Specifies the maximum number of characters that can be

stored in the message.
Initial value...................... Initial value of the variable (length cannot exceed the

capacity of the message). If not specified, the initial value is
the empty string.

These are the description fields for a defined word:

Name................................Name used in ST source files: first character must be a
letter, following characters must be letters, digits or '_'.

Define...............................String according to ST syntax that replaces the defined word
during compiling. Example: Name = PI - Equivalence =
3.14159

CommentFree comment for defined equivalence

These are the description fields for a function block instance:

Name................................Name of the instance, used in ST source files: first
character must be a letter, following characters must be
letters, digits or '_'.

TypeName of the corresponding function block in the library.
CommentFree comment for the function block instance.

A.10.4 Quick declaration

The "Tools / Quick declaration" command enables you to declare several variables at
the same time. Variables created by quick declaration are named using a numbering
convention. For that, you have to define:
- the index (number) of the first and the last variables,
- the text to be added before and after the number in variable symbols
- the number of digits used to express the number in variable symbols.
Additionally, you can specify basic attributes of created variables (internal, input or
output...), plus some properties depending on the variable type ("Retain" attribute,
integer or real format, message string maximum length).

You always need to define a text to be inserted before variable number, as a variable
symbol cannot start with a digit. When the "number of digits" is set to "Auto", ISaGRAF
formats the variable number on the minimum needed number of digits. When number of
digits is specified, ISaGRAF formats all numbers to the specified length by adding
leading '0' characters. Setting a fixed number of digits for variable numbers can be very
useful to prevent bad lexicographic sorting. Below are some examples.

Example: This setting for quick declaration:

will create the three following variables:

Var9xx Var10xx Var11xx

Example: This setting for quick declaration:

will create 100 variables with names from MyVar001 to MyVar100

A.10.5 Modbus SCADA addressing map

ISaGRAF "network addresses" are often used to establish a link between ISaGRAF
system and a SCADA based on Modbus communication. In that case, the SCADA is a
Modbus master and ISaGRAF target acts as a Modbus slave. Network addresses are
used to create a virtual Modbus map for all ISaGRAF variables that must be controlled
from the SCADA. The "Tools / Modbus SCADA addressing map" is a powerful to
quickly create a Modbus virtual map with variables of the application.
The mapping tools shows two lists. The upper one is a segment (4096 locations) of the
Modbus map, showing mapped variables (the ones having a network address). The
lower list shows unmapped variables (without network address defined). The "0"
address cannot be used to map a variable.
Use the "Map" and "Remove" commands of the "Edit" menu to move a variable from
one list to another, and thus build the map. Same actions can be performed by double
clicking on a variable symbol in a list, to send it to the other list. At any moment, you can
use the "Segment" drop down list to view another segment of the map.
The commands of the "Options" menu can be used at any moment to display
addresses either in decimal or in hexadecimal.
The "Edit / Find" commands is used to search for a declared variable, whether it is
already mapped or not.

A.10.6 Exchanging information with other applications

The ISaGRAF dictionary editing tool offers import/export functions in order to exchange
information with other applications, such as word processors, spreadsheets, data base
managers... These commands are grouped in the "Edit" menu. The "Export text"
command builds a pure ASCII text description of the fields describing a set of edited
objects, and stores this text either in the Windows clipboard or in a file. Such
information is typically used by another application. The "Import text" command
imports variable declaration description fields, described in pure ASCII text format,
stored either in the Windows clipboard or in a file, and updates the currently edited list
with imported fields. Such information is typically produced by another application.

Exporting data
The following dialog box appears when the "Export text" command is run. It enables
the user to control the export mechanism.

Checking the "Complete list" choice indicates that the complete edited list has to be
exported. The current selection is ignored in this case. Checking the "Selected
variables" choice indicates that only highlighted variables will be exported.
If the "Clipboard" option is checked, the exported information is stored, in pure ASCII
text format, in the Windows clipboard. The text is then available for "paste" commands
in other applications. If the "File" option is checked, the exported text is stored in an
ASCII file. The complete pathname of this file has to be entered. The "Browse"
command may be used to find an existing pathname.
Then the user chooses a format for the exported text. The available formats are
described in further sections. Pressing the "OK" button runs the export function.
Pressing the "Cancel" button closes the dialog box and escapes from the export
command.
All the fields of the selected objects are stored in the exported text, in the standard
declaration order. The first line of the exported text contains the name of the fields.
Each object is described on one line of text. The "end of line" separator is the standard
MS-DOS sequence "0d-0a". The names used to identify the fields in the first exported

line may be changed, by pressing the "Keyword" button. This command is described in
further sections.

Importing data
The following dialog box appears when the "Import text" command is run. It enables
the user to control the import mechanism.

If the "Clipboard" option is checked, the imported information is taken from the
Windows clipboard, in pure ASCII text format. If the "File" option is checked, the
exported text is read in an ASCII file. The complete pathname of this file has to be
entered. The "Browse" command may be used to find an existing pathname.
The import function automatically recognises the format (separators) used in the
imported text. The available formats are described in further sections. Pressing the
"OK" button runs the import function. Pressing the "Cancel" button closes the dialog
box and escapes from the import command. The names used to identify the fields in the
first imported line may be changed, by pressing the "Keyword" button. This command
is described in further sections.
The first line of the text must contain the name of the fields, according to the order used
in the following lines. Each object must be described on one line of text. The "end of
line" separator is the standard MS-DOS sequence "0d-0a". Fields can appear in any
order. If some fields are missing, they are automatically filled in the imported object
description by default values. If an imported object already exists in the edited list, the
user has to confirm that it will be overwritten. The object description is then updated
with imported fields. If some fields are missing, they are not updated in the object
description.

Available text formats
Below is the list of available formats for export command. The import command
automatically recognises these formats.

• tab separators

Description: Fields are separated by tab characters.

Example: Name Attribute Comment
level internal internal calculated water level
alrm1 output main alarm output

• comma separators

Description: Fields are separated by commas.

Example: Name,Attribute,Comment
level,internal,internal calculated water level
alrm1,output,main alarm output

• semicolon separators

Description: Fields are separated by semicolons.

Example: Name;Attribute;Comment
level;internal;internal calculated water level
alrm1;output;main alarm output

• commas and quotes

Description: Fields are separated by commas.
Each field is written between quotes.

Example: "Name","Attribute","Comment"
"level","internal","internal calculated water level"
"alrm1","output","main alarm output"

Keywords
The names used to identify the fields in the first imported or exported line may be
changed, by pressing the "Keyword" button. This command opens the following dialog
box:

The window shows the list of object fields, and the associated keywords. To modify a
keyword, the user must select a field in the list and press the "Modify" button. Pressing
the "Default" button restores the original list of keywords. Naming the keywords must
conform to the following rules:
• the name cannot exceed 16 characters
• the first character must be a letter
• the following characters can be letters, digits or '_' character
• the same name cannot be used for different keywords

Below are the standard keywords found in ISaGRAF:

Object name.. Name
Text comment ... Comment
Network address... Address
Attributes (internal, input, output)................ Attribute
Boolean 'False' string False
Boolean 'True' string True
Analog format (real or integer)..................... Format
Analog unit string .. Unit
Analog conversion name............................. Conversion
Message maximum length MaxLength
Function block library type........................... Library
Defined word equivalence Equivalence
Internal attribute .. Internal
Input attribute.. Input
Output attribute ... Output
Constant attribute.. Constant
Real analog format...................................... Real
Integer analog format Integer

A.11 Using I/O connection editor

The aim of the I/O connection operation is to establish a logical link between the I/O
variables of the application and the physical channels of the boards existing on the
target machine. To make this link the user has to identify and set-up all the boards of
the target machine, and place I/O variables on corresponding I/O channels.
The list on the left shows the rack of the target machine, with board slots. A slot may
be free, or used by one I/O board or complex equipment. Each slot is identified by an
order number. The rack may contain up to 255 boards. The list on the right shows the
board's parameters and the variables connected on the selected board. A board may
have up to 128 I/O channels. The total number of single I/O boards (including single
equipments and boards of complex equipments) cannot exceed 255.

Icons
The icons displayed on the front face indicate the type and attributes of variables that
may be connected to the board channels. The ISaGRAF system does not allow the
connection of variables of different types on the same board. This is the meaning of the
used icons:

.........................boolean type

......................... integer/real type (both types of variables may be connected)

.........................message type

......................... inputs - no channel connected

.........................outputs - no channel connected

......................... inputs - at least one channel connected

.........................outputs - at least one channel connected

Below are the icons used to show the type of I/O device installed on a slot:

........................complex I/O equipment

........................real I/O board

........................virtual I/O board

Below are the icons used to draw a parameter or a channel:

.....................board parameter
.........................free channel
.........................connected channel

 Moving boards in list
Use these buttons in the toolbar or "Edit / Move board up/down" menu commands to
move the selected I/O board one line up or down in the main list. The "Edit / Insert
slot" command inserts an empty slot at the current position.

A.11.1 Defining I/O boards

The "Edit" menu contains basic commands to define the selected board (set-up its
parameters), and to connect I/O variables to its channels.

Selecting I/O board type
Before connecting I/O variables to a board, the board identification must be entered. A
library of pre-defined boards is available on the ISaGRAF workbench. This library may
have been compiled by one or more I/O device suppliers. The "Edit / Set
Board/Equipment" command is used to set-up board identification. This command
can be used to select either a single board, or complex I/O equipment from the
ISaGRAF library. It is also possible to double click on a slot to set the corresponding
board or equipment.
All the channels of a single board have the same type (boolean, integer/real or
message) and direction (input or output). Real and integer variables are not
distinguished during I/O connection. A complex I/O equipment represents an I/O device
with channels of different types or directions. A complex I/O equipment is represented
as a list of single I/O boards. It uses only one slot in the rack list.

Removing a board
The "Edit / Clear slot" command is used to remove the currently selected board or I/O
equipment. If variables are already connected to the corresponding channels, they are
automatically disconnected when clearing the slot.

Real boards and virtual boards
The "Edit / Real/virtual board" command sets the validity of the selected board or
complex I/O equipment. The following icons are displayed in the rack list to show the
validity of a board:

........................real I/O board

........................virtual I/O board

In Real Mode, I/O variables are directly linked to the corresponding I/O devices. Input
or output operations in the application program tie directly to corresponding input or
output conditions of the actual field I/O devices. In Virtual Mode, I/O variables are
processed exactly as internal variables. They can be read or updated by the debugger,
so that the user can simulate the I/O processing, but no real world connection is made.

Technical notes
The "Tools / Technical note" command displays the on-line user's guide of the
selected board or complex equipment. The board technical note is written by the
hardware supplier of the I/O board. It contains all the information about I/O board
management. It also describes the meaning of its parameters.

Removing connected variables
The "Tools / Free board channels" command disconnects all the I/O variables already
connected on the selected board.

Defining comments for free channels
The "Tools / Free board channels" command disconnects all the I/O variables already
connected on the selected board.

A.11.2 Setting board parameters

To set the value of a board parameter, the user has to double click on its name in the
list on the right. It is also possible to select (highlight) it and choose the "Set
channel/parameter" command of the "Edit" menu. Parameters are listed at the
beginning of the list. The following icon is used to represent them in the list:

.....................board parameter

The meaning and input format of the parameter are designed by the supplier of the
corresponding I/O board or equipment. Use the "Tools / Technical note" command or
refer to your hardware manual for more information about board parameters.

A.11.3 Connecting I/O channels

To set the connection of a channel, the user has to double click on its location in the list
on the right. It is also possible to select (highlight) it and run the "Edit / Set
channel/parameter" command. The following icons are used to represent channels in
the list:

.........................free channel

.........................connected channel

The list contains all the variables which match with the selected board type and
direction. Only variables which are not yet connected are listed here. The "Connect"
button connects the variable selected in the list to the selected channel. The "Free"
button removes (disconnects) the variable from the selected channel. "Next" and
"Previous" buttons are used to select another channel of the board. The location of the
selected channel is always displayed in the title of the dialog box.

A.11.4 Directly represented variables

Free channels are the ones which are not linked to a declared I/O variable. ISaGRAF
enables the use of directly represented variables in the source of the programs to
represent a free channel. The identifier of a directly represented variable always begins
with "%" character.

Below are the naming conventions of a directly represented variable for a channel of a
single board. "s" is the slot number of the board. "c" is the number of the channel.

%IXs.cfree channel of a boolean input board
%IDs.cfree channel of an integer input board
%ISs.cfree channel of a message input board

%QXs.cfree channel of a boolean output board
%QDs.cfree channel of an integer output board
%QSs.cfree channel of a message output board

Below are the naming conventions of a directly represented variable for a channel of a
complex equipment. "s" is the slot number of the equipment. "b" is the index of the
single board within the complex equipment. "c" is the number of the channel.

%IXs.b.cfree channel of a boolean input board
%IDs.b.cfree channel of an integer input board
%ISs.b.cfree channel of a message input board
%QXs.b.cfree channel of a boolean output board
%QDs.b.cfree channel of an integer output board
%QSs.b.cfree channel of a message output board

Below are examples:

%QX1.6 6th channel of the board #1 (boolean output)
%ID2.1.7 7th channel of the board #1 in the equipment #2 (integer input)

A directly represented variable cannot have the "real" data type.

A.11.5 Numbering

Use the "Options / Numbering" command to set numbering conventions. You can
specify the number used for the first slot and the number used for the first channel of
each board in the following dialog box:

As default, slot numbering starts at index "0", and channel numbering starts at index
"1".

Warning: be very careful while changing numbering conventions as it has effect on symbols used
for directly represented variables and may lead to compiling errors if directly
represented I/O variables are used in existing programs.

A.11.6 Setting individual protections

The ISaGRAF workbench provides a complete data protection system based on
hierarchised passwords. I/O connection can be globally protected by a password.
Additionally, ISaGRAF enables you to set individual protection to any I/O channel. This
assumes that:
- passwords are already defined in the password definition system (use the "Project /
Set password" command of the Project Management window) so that protection levels
are available for individual protection.
- you use protection levels with higher priority for individual protection compared to
global I/O protection.

When an I/O channel has individual protection, a small icon is draw close to its name in
the I/O connection window:

Use the "Set protection" and "Remove protection" commands of the "Edit" menu to
set or remove an individual protection for selected channel. Both commands ask you to
enter a valid password so that a protection level can be attached to the channel. Then,
each time you want to change connection to a channel having individual protection you
must enter a password with sufficient priority level.

Warning: If a channel is protected with a level, and the corresponding password is removed from
protection system, and if no higher level password is defined, connection to the channel
cannot be changed anymore unless a new password with sufficient level is defined.

A.12 Creating conversion tables

The ISaGRAF workbench allows the user to create conversion tables. A conversion
table is a set of points used to define an analog conversion. A conversion table can be
attached to an analog input or output variable. A table creates a proportional relationship
between electrical values (read on input sensor or sent to the output device) and
physical values (used in application programming).
Conversion tables are edited through a dialog box run by the "Tools / conversion"
command in the ISaGRAF dictionary window
A defined conversion table can be used to filter values of any input or output analog
variable of the selected project. Attaching a conversion table to a variable is made using
commands of the ISaGRAF dictionary, the variable declaration editor. An input or output
analog variable must then be selected and its parameters edited. A variable cannot be
attached to a conversion table that is not already defined.

A.12.1 Main commands

The "Conversion tables" dialog box shows the list of defined conversion tables, and
contains push buttons for main commands, to edit an existing table (define its points),
to create a new table, and also to rename or delete a table. Press OK to quit the
"Conversion tables" dialog box and save them on disk.

Creating a new table
The "New" command allows the user to create a new conversion table. Up to 127
conversion tables can be created for each project. Only used tables (the ones attached
to analog variables) are inserted in the application executable code. Naming a table
must conform to the following rules:
• the name cannot exceed 16 characters
• the first character must be a letter
• the following characters can be letters, digits or '_' character
• the table name is case insensitive

Changing the contents of a table
The "Edit " command is used to enter the points of a table selected from the list. It is
also possible to double click on the name of the table. The "Edit" command is
automatically called when a new table is created. At least two points must be entered for
each table.

A.12.2 Entering points of a table

The "Edit" dialog box allows the user to define the points of a conversion table. The box
shows on the left side the list of points already defined. The lower right box shows the
defined table as a graphic curve. The points are entered by using the box commands.
The user must comply with the number rules for the definition of points, described at
the end of this chapter. The box on the left always contains the list of existing points for
the currently edited table. The column on the left shows the electrical (external) value of

the points. The column on the right shows the physical (internal) values. The user has
to select a point on the list in order to modify its values or to clear (remove) it. The last
choice of the list ("... ...") is used to define a new point. The box on the lower right
shows the currently edited table as a graphical curve. No axes or co-ordinates are
shown, as this is a proportional representation of the curve. This representation is
useful as a quick check that the curve is properly defined.

Defining a new point
When defining a new point, select the last entry ("... ...") on the list of points. This is
also the default mode when starting to define a new conversion table. The user has to
enter the electrical (external) and the physical (internal) values of each point. Values are
stored as simple precision floating point numbers. Remember that at least two points
have to be entered to define a curve. When both values are entered, pressing the
"Store" button adds the point to the table. A maximum of 32 points can be defined for
each conversion table.

Modifying a point
To modify the values of an existing point, first select it from the list. The new electrical
(external) and the physical (internal) values of the point can then be entered. Values are
stored as simple precision floating point numbers. When both values are entered,
pressing the "Store" button updates the point in the table.

Clearing a point
An existing point is cleared by selecting it from the list and pressing the "Clear" button.
Remember that at least two points must be entered to define a table.

A.12.3 Rules and limits

The rules shown below must be followed when defining a conversion table. The table
can be used to convert both input and output analog variables:
• Two points cannot be defined with the same electrical value
• The curve must be continuously increasing or decreasing
• Two points cannot be defined with the same physical value

The following limits apply when defining conversion tables for a project:
• No more than 127 conversion tables can be defined in the same project
• No more than 32 points can be defined for the same conversion table.

A.13 Using the code generator

The code generation window is automatically opened by the "Verify" and "Make"
commands of the other ISaGRAF Workbench windows. The code generation window is
not automatically closed when the requested code generation operation ends, so that
the user still has access to all the code generation commands and options from the
window menu.

A.13.1 Main commands

The "Files" menu contains the commands for program syntax checking and code
generation.

Make application code
The "Make" command constructs the entire code of the project. Before generating
anything, this command checks the syntax of the declarations and programs. Any error
that cannot be detected during single program compiling is detected during code
generation. This applies to tables of conversion, I/O variable connections and links with
the libraries. The code generation halts the compiling of a program when errors are
detected. This program must be corrected before continuing the code generation.
Programs which have already been checked (with no error detected) and that have not
been modified since their last "Verify" operation are not re-compiled. Variable
declaration verification and application coherence checking are always processed.
During program checking, the "Make" operation can be aborted by hitting the ESCAPE
key.

Note: If the declaration of a local variable of a program has been modified, this program is
verified. If a global variable has been modified, all the programs are verified.

Program syntax checking
The "Verify program" command allows the user to verify only one program. The
selected program is compiled even if it has not been modified since its last verification.
The "Verify dictionary" command allows the user to verify the declarations of all the
variables of the project.
The "Verify all programs" checks the syntax of all the programs of the project, even if
some of them have not been modified. This command does not stop when an error is
detected in a program. It can be used to produce a complete listing of all the errors
remaining in programs of the project. This command may be aborted by hitting the
ESCAPE key.

Simulating a modification
The "Touch" command simulates a modification of all the project's programs, so that
they are all verified during the next "Make" operation. The "Open" command is used to
open the last verified program. This command is very useful to directly access a
program where syntax errors have been detected.

A.13.2 Compiler options

The "Compiler options" command is used to set-up main parameters used by the
ISaGRAF Code Generator to build and optimise the target code. The aim of this
command is to select the type of code which has to be generated, according to
corresponding ISaGRAF targets, and to set-up the optimiser parameters according to
the expected compiling time and application run-time requirements.
The "Upload" button opens a second dialog box with other options that enable the
embedding of zipped source code to downloaded code, in order to enable the "Upload"
feature. Refer to "Upload" documentation for further explanations.

Selecting targets
The upper list shows the list of available target codes that can be produced. The ">>"
sign is used to indicate the selected target(s). The ISaGRAF Code Generator can
produce up to 3 different codes in the same compiling operation. Use the "Select" and
"Unselect" buttons to set the list of required target codes, according to your target
hardware. Below are the standard ISaGRAF targets:

SIMULATE:This code is dedicated to the ISaGRAF Simulator on the
Workbench. The simulator cannot be run if this target is not selected
to produce the application code.

ISA86M:...............This is a TIC code (Target Independent Code) dedicated to
ISaGRAF kernels installed on Intel based processors. The processor
type only concerns byte ordering in the generated code.

ISA68M:...............This is a TIC code (Target Independent Code) dedicated to
ISaGRAF kernels installed on Motorola based processors. The
processor type only concerns byte ordering in the generated code.

SCC:Selecting this target leads ISaGRAF compiler to produce structured
"C" language source code to be compiled and linked with ISaGRAF
target kernel libraries to produce an embedded executable code.

CC86M:Selecting this target leads ISaGRAF compiler to produce non
structured "C" language source code to be compiled and linked with
ISaGRAF target kernel libraries to produce an embedded executable
code. This selection is provided for compatibility with ISaGRAF
versions before V3.23, when structured "C" code generation and
integration were not supported.

Refer to your hardware manual to know the type of ISaGRAF target kernel installed on
your PLC. Other target types (machine code, C source code...) may be supported in
future releases of the ISaGRAF Workbench.

SFC processing
Check the "Use embedded SFC engine" box to enable the use of the ISaGRAF SFC
engine. This mode should be preferred as it leads to higher run time
performances. However, the target engine may be missing on some particular
implementations of the ISaGRAF target, of more commonly on customised targets
based on ISaGRAF code post-processing. In this case you may have to remove this
option and let ISaGRAF compiler translate SFC charts into low level instructions. Refer
to your hardware documentation for more information about the use of this option.

Optimiser options
Below are the parameters, used by the ISaGRAF Code Generator to optimise the target
code, that can be set from the "Compiler options" dialog box. The "Default" button is
used to remove all optimising options, in order to reduce the compiling time.

When the "Run two optimiser passes" option is set, the ISaGRAF Code Optimiser is
run twice. Optimisations made during the second pass are generally less significant
than the ones made in the first pass.

When the "Evaluate constant expressions" option is set, constant expressions are
evaluated by the compiler. For example, the numerical expression "2 + 3" is replaced by
"5" in the target code. When this option is not set, constant expressions are calculated
at run-time.

When the "Suppress unused labels" option is set, the Optimiser simplifies the system
of jumps and labels of the programs, in order to suppress unused target labels or null
jumps.

When the "Optimise variable copying" option is set, the use of temporary variables
(used to store intermediate results) is optimised. This option is commonly used with the
"Optimise expressions" option. When this option is set, the Optimiser re-uses the
result of expressions and sub-expressions which are used more than once in the
program.

When the "Suppress unused code" option is set, the Optimiser suppresses the code
which is not significant. For example, if the following statements are programmed: "var
:= 1; var := X;", the corresponding generated code is only: "var := X;".

When the "Optimise arithmetic operations" option is set, the Optimiser simplifies
arithmetic operations according to special operands. For example, the expression "A +
0" will be replaced by the "A". When the "Optimise boolean operations" option is set,
the Optimiser simplifies boolean operations according to special operands. For
example, the boolean expression "A & A" will be replaced by "A".

When the "Build binary decision diagrams" option is set, the Optimiser replaces the
boolean equations (mixing AND, OR, XOR and NOT operators), by a reduced list of
conditional jump operations. The translation is operated only if the expected execution
time of the jump sequence is less than the one expected for the original expression.

The following table summarises the expected optimisation and requested compiling time
corresponding to each parameter:

gain (performances)compiling time
Run 2 passes xxxx ..(*)
Optimise constant expressions xxxxxxxxxxxx
Suppress unused labels xxxx ..xxxxxxxx
Optimise variable copying xxxx ..xxxxxxxx
Optimise expressions xxxx ..xxxxxxxx

Suppress unused code xxxx ..xxxxxxxx
Optimise arithmetic operations xxxxxxxxxxxx
Optimise boolean operations xxxxxxxxxxxx
Build binary decision diagrams xxxxxxxxxxxxxxxxxxxxxx

(*) The compiling time is also multiplied by 2.

A.13.3 Producing C source code

The ISaGRAF workbench enables the production of source code in "C" language. In
this case, the whole contents of the application, including SFC chart description, data
base definition and sequences of code are generated in "C" source code format. There
are two possibilities, proposed as two styles of generated code:

CC86M(C source code - V3.04) produces non-structured "C" source code.
This style should be selected if your target software is based on
ISaGRAF release previous to 3.23.

SCC(structured C source code) produces a structured "C" source code.
This style should be preferred if your target software is based on
ISaGRAF release 3.23 or later.

The following two files are created in the project directory:
APPLI.C...............common source code of the application
APPLI.H...............common "C" language definitions

In the case structured "C" source code generation, a ".C" source file and a ".H"
definition file are created for each program of the application, in addition to common
"APPLI.C" and "APPLI.H" files. These files must be compiled and linked to the
ISaGRAF target libraries in order to produce the final executable code. Refer to the
"ISaGRAF I/O development toolkit User's Guide" for further information about
recommended implementation techniques.

Note: Some debugging features such as application downloading, on line modification and
breakpoints are no more available when the ISaGRAF application is "C" compiled.

A.13.4 Viewing information

The "Edit" menu contains the commands for viewing the different text files built during
code generation or syntax checking operations on the code generator window. The code
generation window is a text area that contains messages during code generation or
syntax checking operations. All information is stored on the disk so it can be examined
using the "Edit" menu commands.

Editing commands
The "Clear Screen" command is used to clear the window text area. The window is
automatically cleared before each code generation or syntax checking operation. The
"Copy" command is used to copy the displayed text in the clipboard of Windows, so it
can be used by other applications such as ISaGRAF text editors.

Viewing compiler output messages
The "Execution messages" command shows all the messages displayed during the
last "Make" or "Verify" operation on the window text area. This applies to all the error
messages.

Other choices of the "Edit" menu allow the user to monitor auxiliary text files created
during syntax verification and code generation. These files are not usually used for a
common ISaGRAF project.

A.13.5 Defining resources

The "Resources" command of the "Options" menu allows the user to define
resources. A resource is any user-defined data (network configuration, hardware
setting...) of any format (file, list of values) which has to be merged with the generated
code, in order to be downloaded with it in the target PLC. Such data is not directly
operated by the ISaGRAF kernel, and is commonly dedicated to other software installed
on the target PLC. Refer to your hardware manual for further information about available
resources.

The resource definition file
The resources are defined in a "Resource definition file" stored with other files of the
ISaGRAF project. This is a pure ASCII text file, processed by the ISaGRAF Resource
Compiler. This compiler is automatically run when the application code is built. This
section explains the syntax of this file. The resource definition file uses lexical rules of
the ST language. Comments, beginning with "(*" and ending with "*)" characters can be
inserted anywhere in the text. Strings are delimited by single apostrophes. Refer to the
second part of this manual for more explanations about the lexical formats used to enter
numerical values.

Language reference
Below is the list of keywords and statements used in a resource definition file.

ULONGDATA

Meaning: Specifies a resource which is a list of integer values. Values are stored in
target code as unsigned 32 bit integers. Values are stored in the order
specified in the resource definition file. Values must be separated by
comas. The name of the resource cannot exceed 15 characters.

Syntax: ULONGDATA '<resource_name>'
BEGIN
...target_selection...
...list of values...

END

Example: ULongData 'MYDATA'
Begin
...
0, -1, 100_000, (* decimal *)

16#A0B1, 2#1011_0101 (* hexadecimal, binary *)
End

VARLIST

Meaning: Specifies a resource which is a list of variable addresses. Variables are
identified by their name in the resource definition file. Variable addresses
are stored in target code as unsigned 16 bit integers. Addresses are
stored in the order specified in the resource definition file. Variables must
be separated by comas. The name of the resource cannot exceed 15
characters.

Syntax: VARLIST '<resource_name>'
BEGIN
...target_selection...
...list of variable names...

END

Example: VarList 'LIST'
Begin
...
Var100, MyParameter, Command, Alarm

End

BINARYFILE

Meaning: Specifies a Binary File resource. The source data is stored in an MS-
DOS file. The target resource definition is completed with a target
pathname. End of line characters are not converted by the ISaGRAF
Resource Compiler. The name of the resource cannot exceed 15
characters.

Syntax: BINARYFILE '<resource_name>'
BEGIN
...target selection...
FROM '<source_pathname>'
TO '<destination_pathname>'

END

Example: BinaryFile 'MYFILE'
Begin
...
From 'c:\user\config.bin'
To '/dd/user/appl/config.dat'

End

TEXTFILE

Meaning: Specifies a Text File resource. The source data is stored in an ASCII file.
The target resource definition is completed with a target pathname. End
of line characters are converted by the ISaGRAF Resource Compiler

according to the target host system conventions. The name of the
resource cannot exceed 15 characters.

Syntax: TEXTFILE '<resource_name>'
BEGIN
...target selection...
FROM '<source_pathname>'
TO '<destination_pathname>'

END

Example: TextFile 'MYFILE'
Begin
...
From 'c:\user\config.bin'
To '/dd/user/appl/config.dat'

End

TARGET

Meaning: Specifies the name of a target code that has to include the resource.
Refer to the previous section (compiler options) for further information
about handled targets. The "Target" statement can appear more than
once in the same resource block, in order to select several targets. This
statement cannot be used if the "AnyTarget" statement is specified.

Syntax: TARGET '<target_name>'

Example: BinaryFile 'MYFILE'
Begin
Target 'ISA86M'
Target 'ISA68M'
...

End

ANYTARGET

Meaning: Specifies that the resource must be merged to all the target codes built
by the Code Generator. The ISaGRAF Code Generator can produce
several target codes during the same "Make" command. This statement
cannot be used if one or several "Target" statements are specified.

Syntax: ANYTARGET

Example: ULongData 'MYDATA'
Begin
AnyTarget
...

End

FROM

Meaning: Specifies the source pathname (on the PC where the ISaGRAF
Workbench is installed) of a BinaryFile or TextFile resource. The
characters used to isolate the components of the pathname (drive,
directory, prefix, suffix) must conform to the MS-DOS system
conventions.

Syntax: FROM '<target pathname>'

Example: BinaryFile 'MYFILE'
Begin
...
From 'c:\user\config.dat'
To '/dd/user/appl/config.dat'

End

TO

Meaning: Specifies the destination pathname (on the target system) of a
BinaryFile or TextFile resource. The characters used to isolate the
components of the pathname (drive, directory, prefix, suffix) must
conform to the target host system conventions.

Syntax: TO '<target pathname>'

Example: TextFile 'MYFILE'
Begin
...
From 'c:\user\config.dat'
To '/dd/user/appl/config.dat'

End

Example
Below is a complete example of a resource definition file:

(* resource definition file *)

ULongData 'DATA1' (* list of values *)
Begin
 Target 'ISA86M' (* for this target only *)
 1, 0, 16#1A2B3C4D, +1, -1 (* numerical values *)
End

VarList 'VLIST1' (* list of variables *)
Begin
 Target 'ISA86M' (* for this target only *)
 Valve1, StateX, Command, Alrm1 (* variable names *)
End

BinaryFile 'FILE1' (* binary file resource *)
Begin
 AnyTarget (* dedicated to all targets *)
 From 'c:\user\updatef.bin'(* source file on PC *)
 To 'updatef.cfg' (* target file on PLC *)

End

TextFile 'FILE2' (* text file resource *)
Begin
 Target 'ISA68M'
 From 'c:\nw\nwbd.txt' (* source file on PC *)
 To '/nw/dat/nwbd' (* target file on PLC *)
End

Resource compiling
If resources have been entered in resource definition file, a dialog box appears at the
end of ISaGRAF code generation. Press the "Start compile" button to run resource
compiler. Output messages and errors will be displayed in the main control. Press
"Exit" to avoid resource compiling. In this case, resources will not be added to the
ISaGRAF code.

Implementation
The number of resources, the size of data rows and files are not limited by ISaGRAF.
Resources are stored at the end of the generated code, with a resource directory. Below
is the format (using C notations) of the resource directory format:

__RESOURCE:
{
 long nbres; /* number of defined resources */
 {
 char name[16]; /* resource name */
 long type; /* resource data type */
 long size; /* exact size of data block */
 uint32 data;
 uint32 path_offset; /* points to a string */
 } /*nb of records */
}

Below are the possible values of the "type" field:
• 1 = binary file
• 2 = text file
• 3 = ulong data (path_offset field is not used in this case)
• 4 = variable list (path_offset field is not used in this case)

For text files, end of line characters are translated by the resource compiler, according
to the target system conventions. All pointers are 32 bit offsets from the address of the
corresponding structure. All resource names and pathnames are NULL terminated
strings. Pathnames and data follow the resource directory.

A.14 Cross References

The ISaGRAF workbench includes a cross-reference editor which provides user with a
total view of the declared variables in the project's programs, and where they are used.
The aim of the cross reference is to list all the variables declared in the project, and to
localise, at the source of each program the parts of source code where those variables
are used. The cross-references are very useful for a global view of one variable life
cycle. They help localise side effects, and reduce the time to understand the project
during the maintenance. The cross-references may also be used for a global view of the
complete dictionary of a project, so unused variables are easily found and the
complexity of the project measured.
The list on the left shows the declared objects of the project (programs, variables and
defined words), and the library elements (functions and function blocks) referenced in
the project. The list on the right shows the occurrences in the programs of the object
currently selected in the first list.
The description of an occurrence includes the program name, the number of the FC or
SFC step, transition or test, plus line number for text languages or co-ordinates for LD
or FBD diagrams. For quick LD diagrams, the description is completed with the number
of the rung. If the variable is used as an output (on a coil) the rung number is followed
by a star ("*") character.
Set the "Show unused variables" option from the "Options" menu to display also in
main list variables that are not used in the application programs.

Object type selection
Because a project can group a huge number of declared objects, the combo box in the
editor toolbar is used to select the type of objects which must be listed in the window.
This allows the user to have access to selected information.
Each time the cross-references are re-calculated, the selection is reset to "All objects"
in order to present the complete list.

Re-calculate cross-references
The "File / Re-calculate" command can be used at any time to update the cross
references according to the modifications entered in other ISaGRAF editing windows.

Export cross-references
The "Tools / Export" command is used to write the complete listing of the cross-
references in an ASCII text file. This file can then be opened with other applications
such as Windows NotePad or word processors.

Dictionary errors
The "Edit / Dictionary errors" command displays in a dialog box the list of errors
detected when the project dictionary was loaded.

Statistics
The "Tools / Statistics" command displays in a dialog box the number of objects and
variables declared in the project, according to variable types and attributes. A particular

application of this command is to know the number of I/O variables declared in the
project, in order to ensure that it can be compiled, if a limited version of the ISaGRAF
Workbench is used.

Search in object list
The "Edit / Search" command allows the user to directly select an object in the editor
list. The searched object cannot be found if it is not actually listed (when using a
selected display). It is recommended, before searching for an object, to activate the
"All" selection in the toolbar.

Open program
The list on the right contains the occurrences of the selected object in the source files
and I/O connection of the open project. The "Edit / Open program" command enables
the user to directly open a program where the object appears. It is also possible to
double click the mouse on an occurrence (in the occurrence list) to open the
corresponding program.

A.15 Using the graphic debugger

ISaGRAF includes a complete graphic and symbolic debugger. The "Debug" command
of the program management window runs the debugger to control the application
downloaded in the target PLC. In this mode, the debugger communicates with the target
system via hardware link. The "Simulate" command of the program management
window simultaneously runs the debugger and a complete target simulator. This
enables the user to test his application when the target's I/O system is not yet complete.
The debugger window contains the commands to control the entire application.
When the debugger starts, and if the application in the target PLC is the same as the
one on the workbench, it automatically opens the program management window, in
debug mode. Commands of this window may be used to open other ISaGRAF windows
(graphic and text editors, dictionary, lists of variables, I/O connection...). All windows
opened during a debug session operate in "debug mode", meaning that the editing
command is disabled. Displayed program components (steps, transitions, variables...)
are shown with their current run time status or value. Double clicking on an object
changes its status or value in the target application.
When running the debugger in simulation mode, communication with the ISaGRAF
target system is stopped. The debugger only communicates with the simulator window.
Because the target system does not exist in this mode, the "download", "stop" or
"activate" commands are not available on the debugger menu.

A.15.1 The debugger window

The debugger window only contains information about the complete application status.
It is linked to other ISaGRAF windows creating a complete interactive debug system.
Detected run time errors are displayed in the bottom area of the debugger window.
Commands from the "Options" menu are used to hide, show or clear the list of errors.

The control panel (area under the debugger menu) shows the global status of the target
application, and information about the execution cycle timing. The list of possible target
status is as follows:
Logging:Debugger establishes communication with the target

system.
Disconnected:Debugger cannot communicate with the target system.

Ensure connection cable and communication parameters
are valid.

No application:................Connection is OK, but no ISaGRAF application currently
exists in the target system. Download an application.

Application active:..........Connection is OK and an active application exists in the
target system. Debugger is now establishing the
communications with this application, if it is the same as the
one on the Workbench.

RUN:Target application is in "Real Time" mode.
STOP:...............................Target application is in "Cycle to Cycle" mode.
BreakPoint:......................Target application is in "Cycle to Cycle" mode, because a

breakpoint is encountered.
Fatal Error:Target application failed because a serious error occurred.

Information on the run time cycle timing is as follows:
Allowed:programmed timing.
Current:............................exact timing of the last complete execution cycle.
Maximum:........................maximum timing detected since the application started.
Overflow:number of execution cycles detected with a timing greater

than the allowed timing.
All time values are given in milliseconds. Time values are not displayed when debugger
is used in simulation mode.

A.15.2 Controlling the application

The "File" and "Control" menus contain the commands for the installation and the
control of the currently edited ISaGRAF application on the ISaGRAF target system.

Note: Some of these commands are not available during simulation, because the application
processed by the simulator is automatically installed by the ISaGRAF Workbench.

Stop the target application
The "File / Stop application" command stops the execution of the application currently
active in the ISaGRAF target system.

Activate the target application
The "File / Start application" command runs the application existing in the target
system. When an application is downloaded, it is automatically started, so that the
"Start" command does not have to be used. The "Start" command is typically used
after a "Stop" command.

Note: the target application must be stopped (inactive) before it is possible to download a new
application.

Download the application
The "File / Download" command is used to download the application code in the target
system. Select the type of code to be downloaded, according to the target system
processor and the application options.

Display version number
The "File / Get version number" command is used to display complete identification
of both Workbench and target applications. The Workbench application is the one
currently open on the ISaGRAF Workbench. The target application is the one executed
in the target ISaGRAF PLC. The following items are displayed:
VERSION:This is the version number of the application code. This

number has been calculated by the code generator.
DATE:...............................This item shows the date and time when the code has been

built.
CRC:.................................This is a checksum calculated with the contents of the table

of symbols. This number has been calculated by the code
generator. This value depends on the contents of the
dictionary of variables.

Note: The "Get version number" command is also available during simulation. In real debug
mode, this command cannot be used if the target PLC is not connected.

On line modification
The "File / Update application" command enables the user to achieve "on line
modification" of the running target application. This command is detailed in further
sections of this chapter. It is not available when the debugger is used in simulation
mode.

Real Time mode
The "Control / Real time" command is not available when no application is active. It
sets the target application in normal "real time" mode: Normal mode: the execution
cycles are triggered by the programmed cycle timing.

Cycle to Cycle mode
The "Control / Cycle to cycle" command is not available when no application is active.
It sets the target application in normal "cycle to cycle" mode: In this mode, cycles are
executed one by one, according to the "Execute one cycle" commands made by the
user from the debugger menu.

Execute one cycle
When target is in cycle to cycle mode, the "Control / Execute one cycle" command
runs the execution of one cycle.

The cycle timing
The "Control / Change cycle timing" command enables the user to modify the
programmed cycle timing. This time is titled as "Allowed" in the debugger control bar
window. The "Cycle to cycle" mode should be set before modifying the cycle timing.
The cycle timing is entered as an integer number in milliseconds.

Remove all breakpoints
The "Control / Clear all breakpoints" command removes all the breakpoints currently
installed (encountered or still active) in the whole application. Existing breakpoints are
not automatically removed when the debugger window is closed.

Unlock I/O variables
The "Control / Unlock all IO variables" command unlocks all the I/O variables
currently locked in the application. When an I/O variable is locked, no input or output
status change is made to the corresponding I/O device. Variables attached to the I/O
can still be written by the application or by the debugger. Currently locked I/O variables
are not automatically unlocked when the debugger window is closed.

A.15.3 Options

The "Options" menu contains the options to control the information displayed in the
debugger window.

The communication parameters
The communication timing parameters can be adjusted when the debugger is active.
Only communication time-outs can be set here. Other communication parameters
(baud rate, parity...) must be set from the "Debug" menu of the Program Management
window.
The "Communication time-out" is the time left for the target system to begin the
answer to one workbench request. The "Cyclic refresh duration" is the time period
required for the "read" requests to be sent by the debugger in order to refresh data in
the opened windows.
All the time values are displayed and entered as integer numbers in milliseconds. The
communication timing parameters cannot be set when the debugger is used in
simulation mode.

Display options
The "Show cycle timing" option enables the user to hide or show the cycle timing
values in the debugger control bar. When this option is set, all the cycle timing
components (allowed, current, maximum, overflows) are displayed and refreshed.
Disabling this option reduces the debugger communication burden.
When the "Show errors" option is set, detected run time errors are listed in the bottom
area of the debugger window. When this option is disabled, the error list is closed.
Removing this option reduces the debugger display and communication burden. The
"Options / Clear errors" command clears the list of run-time errors currently displayed
in the debugger window.
The "Options / minimise window" command reduces the size of the debugger
window so that it is shown as a small, always on top, panel containing only the
application status and graphic buttons for most commonly used commands.

A.15.4 "Write" commands

The ISaGRAF symbolic debugger offers many commands to change the value or
status of the application components. Selecting the component to be changed is done
by double clicking on its name or its drawing in an editing window, when the debugger
window is opened.

Variables
A variable status is changed by double clicking on its name in one of the following
windows:
• Dictionary
• Lists of variables or time diagrams
• LD or FBD Programs
• I/O connection

The following commands are offered in the debug dialog box:
• Write the variable to a new value
• Lock the variable (for I/O variables only)
• Unlock the variable (for locked I/O variables only)
• Start or stop a timer variable (set automatic refresh mode)

Symbolic values used to represent boolean FALSE and TRUE values are the strings
defined for that specific boolean variable in the dictionary. The analog value specified
for a "Write" command must be entered in an integer or real format, according to the
variable definition in the dictionary. The string specified for a "Write" command for a
message cannot be longer than the message capacity attached to that specific variable
in the dictionary.

SFC objects
To observe a control operation on an SFC program while debugging the application,
commands of the "File" menu are used in the Program Management window. The SFC
program must be selected from the list of programs. The following commands are
available:

Start SFC program:Enables the selected program by putting an SFC token into
each of its initial step.

Kill SFC program:Kills the selected program by removing all its existing tokens.
Freeze SFC program:Suspends the execution of the selected program.
Restart SFC program:Restarts a frozen (suspended) program.

For child programs, these commands correspond to the "GSTART", "GKILL",
"GFREEZE" and "GRST" functions in the programming language.

A control operation can be seen in an SFC step when debugging the application by
double clicking on its graphic representation in the SFC editing window. The following
commands are available in the debug dialog box:
• Install a breakpoint on the step activation
• Install a breakpoint on the step de-activation
• Clear breakpoint added to the step

Note: Activation and de-activation breakpoints cannot be added to the same step.

A control operation can be seen in an SFC transition when debugging the application
by double clicking on its graphic representation in the SFC editing window. The
following commands are proposed in a debug dialog box:
• Add a breakpoint on the transition clearing
• Clear a breakpoint added to the transition
• Manually clear the transition (move or add tokens)

Conditional clearing: a token is created on the steps following the transition. The
tokens existing in the preceding steps are removed. Unconditional clearing: a token is
created on the steps following the transition. The tokens existing in the preceding steps
are not removed.

A.15.5 On line modification

The "On line modification" feature enables the user to modify the application while the
process is running. This is sometimes necessary for chemical processes where any
interruption may jeopardise production or safety. This function should be used very
carefully. ISaGRAF may not be able to detect all possible conflicts generated by user
defined operations as a result of these on-line changes.

Code sequences
As ISaGRAF offers many possibilities for access to variables, programs or I/O boards
from the debugger, the "On line modification" function described here applies only to
the code sequences modification. A sequence of code is a complete set of ST, IL, LD
or FBD instructions executed in a row. In a "beginning of cycle" or "end of cycle"
program, a code sequence is the entire list of instructions written in the program. In an
SFC program, a code sequence is the Level 2 programming of one step or transition.
The "On line modification" consists of replacing one or more code sequences, without
stopping the PLC execution cycle. As the control of the SFC tokens is very critical, it is
not possible to modify an SFC structure, to add, renumber or remove a step, a
transition or an SFC program.

Variables
As the variable database is a very critical part of the application, it can be accessed at
any time by other processes (on multitasking PLC). It is also possible to modify variable
values from the debugger. Therefore, ISaGRAF does not allow the user to add,
rename or remove a variable on line. Anyway, it is possible to modify the way a
variable is used in the application. It is also possible to reserve "unused" internal or I/O
variables in the first version of the application, so that future modifications can make
use of them.
They are different styles of variables in ISaGRAF target database. Limitations act on all
of them:

- Declared variables

They are the ones declared using the ISaGRAF dictionary. They cannot be changed
and cannot be renamed for on line change. It is recommended that some extra variables
are declared and initialised in the application even if not used today. Such extra
variables will enable future modifications to work on without changing the application
data checksum.

- Instances of function blocks

Each instance of "C" or IEC written function block corresponds to data stored in
ISaGRAF target real-time database. When function block instances are added or
removed, On Line change is no more possible. So it is better to work in ST with FB
instances declared in dictionary, rather than adding blocks (that will correspond to new
automatically declared instances) in Quick LD or FBD diagrams. Also, any modification
in the definition of available function blocks in the ISaGRAF library will lead to an
impossible On Line change.

- Steps

Each SFC step corresponds to a piece of data where are stored SFC step dynamic
attributes (its activity time and flag). Adding or removing SFC steps change the
application database and is denied for On Line change.

- Hidden variables allocated by compilers

The ISaGRAF Compiler generates "hidden" temporary variables to solve complex
expressions. In some case, the change of an expression may lead to a different set of
non-visible temporary variables, and that leads to an impossible On Line change. To
avoid this situation, you can add the following entries in ISA.INI file, in order to force a
minimum number of temporary variables to be allocated for each program, even if not
used for the compiling of the first application version. Values given here are examples:

[DEBUG]
MNTVboo=8 ; for booleans
MNTVana=4 ; for integers and reals
MNTVtmr=4 ; for timers
MNTVmsg=2 ; for messages

When such a setting is written in ISA.INI, the compiler outputs a warning message if a
new compiling of the application leads to a greater number of allocated temporary
variables.

Inputs and outputs
As the ISaGRAF I/O system is very open, required modifications should be
implemented by the OEM, using specific features of the corresponding hardware. The
ISaGRAF system does not allow the user to add, connect or remove an I/O
variable, or to modify the description of an I/O board on line. Operations such as
modifying board parameters and locking I/O channels are available using standard
OEM features and the "OPERATE" function.

Run time operations
Modifying a running application consists of the following operations:
• modify the application source code on the workbench
• generate the new application code
• download the new application code using "update" command instead of "download"
• switch from the old application to the new one, in between PLC execution cycles
using the "Realise update" command.

This procedure guarantees that the target PLC always has a complete and reliable
running application, and enables the user to control the timing of the sample operations
in a very safe and efficient way. It also enables the user to modify the project as often as
possible. Regardless to the process itself, the "On line modification" is essentially the
same as a normal "stop, start and download" set of commands. The only differences
are that no variable state is lost, and the switching time is very short (usually 1 or 2
cycle duration). During the switch, no variable is modified, and all internal, input or
output variables keeps the same value before and after the application modification.
During the switch, no action is performed, and SFC tokens are not moved.

Memory requirements
In order to support the "On line modification" capability, the target PLC must have free
memory space to enable the storage of the modified version of the application code.
Both versions of the application code have to be stored in PLC memory during the
switch operation.

Limitations

As described before, only modifications to code sequences are allowed. Variable
definition, application parameters and I/O connections cannot be modified. When
downloading a modified version of the application, ISaGRAF makes a comparison
between the modified application and the running one, in order to detect any unsafe
change. If the switch seems dangerous or impossible, a download error is generated.
One of the safeguards performed by ISaGRAF is to compare the symbol table
checksum, so that any variable, program, or SFC element name change is detected. If a
step is active when the switch occurs, its non-stored (N) actions are lost. The new step
activation actions are not executed. Actions executed at the de-activation of the step are
the ones carried over in the new application code. If a transition is valid when the switch
occurs, its receptivity equation is updated. The new downloaded application code is not
backed up on the PLC. The backup is the version which was previously downloaded
with standard download commands.

Operations
To update the code of a running application, the following operations have to be
performed:
• Before making any change on a running application, it is highly recommended to
make a copy of the current project under another name. The modifications may be
performed on the copies.
• Before editing any program, the user should check that the "update diary" option of
the editing tools is set, to ease future program maintenance.
• When one or more sequences have been modified (without modifying SFC structures
and program hierarchy), the code of the new application must be generated on the
workbench before downloading.
• Using the debugger, from within the old project, the user must connect the target PLC
and perform any operation which can make the application update faster or more safety.
• Using the debugger, from inside the new project, the user must connect the target
PLC. If the application name is changed, the target database cannot be accessed. The
user must run the "File / Update" command.
• The modified application is downloaded by selecting the "update later" option. This
may slightly slow down the PLC during transfer.
• When download is complete, the user can run the "File / Realise update" command
to enable the switch at the most adequate moment. The switch will have a 1 or 2 cycle
duration.
• When the switch has been correctly performed, the programs of the modified running
application are displayed. If not, the existing running application remains as is.

A.15.6 DDE exchanges

The ISaGRAF debugger includes a DDE (Dynamic Data Exchange) server. An advice
loop can be installed between the ISaGRAF debugger and other applications, in order to
dynamically display the current value of variables in non-ISaGRAF applications.
Only "advise" and "poke" transactions are supported by the ISaGRAF debugger DDE
server. You can use "request" transaction only for variables already spied in an advice
loop. Other DDE services such as "execute" are not available. When an advice loop is
established on a variable, the value of this variable is updated in the client application
each time it changes. Variables of any type can be spied. The identification of the
dynamic link includes the following names:

Service name:"ISaGRAF"
Topic name:Name of the ISaGRAF project
Item name:Name of the variable

If the variable is local to a program, its name must be followed by the name of its father
program, written between parentheses, with the following syntax:

variable_name(program_name)

The ISaGRAF debugger DDE server is dedicated to the ISaGRAF application currently
spied by the debugger. Up to 256 variables can be spied by the ISaGRAF server. The
DDE server may be used when the ISaGRAF debugger runs in either connected or
simulation mode. The refresh duration is the one established for communication
between the debugger and the ISaGRAF target system or simulator.

A.16 Spying Lists of variables

The "Spy lists " command in the "Spy" menu of the Debugger window enables the
user to build non-contiguous lists of variables which are refreshed with their current
values. Lists are built when debugging the application. The lists can be stored on the
disk and opened again during other debug sessions. A list may contain up to 32
variables. Variables of different types may be mixed in the same list. Global and local
variables can be inserted in a list. A list of variables is dedicated to one particular
project. Lists of variables are very useful for the functional testing of an application.
They allow the user to watch the changes of a limited part of the controlled process,
independent of the corresponding source code in the application programs. Lists of
variables are also useful while debugging ST and IL text programs. The user can easily
group in a list the set of variables used in a program, in order to control or monitor the
execution of the programmed instructions.
For each variable of the list, ISaGRAF displays its name, its current value and its
comment text. Columns can be resized by dragging separation lines with mouse in the
list title bar.

Saving lists on hard disk
The commands of the "File" menu are used to create, open and save the lists of
variables. The number of lists for one project is not limited by ISaGRAF. While naming
the lists of variables to be saved on disk, the rules shown below have to be followed:
• name cannot exceed 8 characters
• the first character must be a letter
• the following characters can be letters, digits or underscore character
• naming of lists is case insensitive

The list editor cannot display more that one list of variables at a time in the same
window. However, the list editor can be run more than once, in order to spy different
lists simultaneously.

Inserting variables in the list
The "Edit / Insert" command inserts another variable in the list. The variable name is
selected in the list of objects defined in the project dictionary. This way the user does
not have to manually enter the identifier. The variable is inserted before the variable
currently selected in the list. The list cannot contain more than 32 variables. The same
variable cannot appear more than once in the same list.

Changing the selected variable
The "Edit / Modify" command replaces the selected variable by another variable. You
can also use the "Cut" command to remove the selected variable from the list.

Dump display
At any time, you can swap viewing mode between list and "Dump" view. Press the
"zoom" button in toolbar or use "Options / Dump" command to swap viewing mode.
In "Dump" mode, only one variable value is displayed. Its value is displayed in
numerical/symbolic format at the top of the window, and is also displayed in binary

"dump" format. This mode allows you to spy hexadecimal value of each byte in the
variable value.

"Dump" display is very useful for spying and understanding message strings containing
non-printable characters.

A.17 Debugging ST and IL programs

During simulation or On Line debugging of ST and IL program, no modification can be
entered in the program text.

IL For IL programs, instructions are formatted in a list view. Current value of a variable
used in an instruction is displayed on the same line. You can double click on an
instruction to change the value of the corresponding variable.

ST For ST programs, a Spy List window is embedded in the editor window. You can resize
views by dragging with the mouse the separation line between them.

For each variable of the list, ISaGRAF displays its name, its current value and its
comment text. Columns can be resized by dragging separation lines with mouse in the
list title bar.

Saving list on hard disk
The "File / Save list" command save the lists of variables on the disk, under the same
name as the edited program. This list will be automatically re-loaded each time ST or IL
program is open in debug mode. This list can also be freely open and modified using
the Spy List tool run by the "Spy / Spy list" command of the debugger window.

Inserting variables in the list
The "Edit / Insert variable" command inserts another variable in the list. The variable
name is selected in the list of objects defined in the project dictionary. This way the user
does not have to manually enter the identifier. The variable is inserted before the
variable currently selected in the list. The list cannot contain more than 32 variables.
The same variable cannot appear more than once in the same list.

When the name of a variable is highlighted in ST text, press this button in the toolbar or
run the "Edit / Spy selection" command to directly send the variable to embedded spy
list.

Changing the selected variable
The "Edit / Change variable" command replaces the selected variable by another
variable. You can also use the "Cut variable" command to remove the selected variable
from the list.

A.18 Debugging with SpotLight

ISaGRAF SpotLight tool allows the user to define watch lists that can be displayed
either as graphic pictures or as lists during debug. Graphic items must be linked to the
variables of the ISaGRAF project. The graphic picture is both defined and animated "on
line".
To force the value of a variable, double click on the corresponding item from graphic or
list layout, or hit ENTER when it is selected.
You also can lock the document (deny any modification) using the "File / Lock"
command. When a document is locked, you still can force variables by double clicking
on their symbol.

A.18.1 Building the graphic layout

A chart is made of background pictures (bitmaps or metafiles), and a set of graphic
items that will be animated during debug. To enter the chart, the following operations
must be performed: Insert background pictures, insert graphic items, link objects to the
variables of the project

Background pictures
The background pictures are "bitmap" (.BMP) or “metafile” (.WMF) files. Numbers of
pictures included in the graphic layout is not limited. Pictures can be moved or resized
in graphic layout. They do not appear in list layout. Pictures are built with other tools.
SpotLight does not include a painting tool. The "Options / Background colour"
command is used to select a solid colour for empty space in graphic layout.

Note: Bitmaps consume a large amount of memory. It is highly recommended to correctly size
the picture, and limit the unused space inside the bitmap rectangle.

Single text display
A “single text” item is a text written in a rectangle. The text displayed is the value of the
attached variable. Thus, such item can be linked to message string variable.
The rectangle where text is displayed can be either filled with colour or transparent. The
character font used to display text is adjusted to fit the height of the rectangle when item
is resized.

 Unipolar and bipolar bar graphs
A bar graph is a rectangle with a coloured part that represents the numerical value of
the attached variable. Optionally, the rest of the rectangle can be filled with colour. A bar
graph can be either horizontal or vertical.
Unipolar bar graphs can grow in any direction: to the top, to the bottom, to the left or to
the right.
Bipolar bar graphs can grow either in positive or negative direction, according to the
value of attached variable. In case of a bipolar bar graph, the maximum allowed value is
the same for both negative and positive scales.

Curves
It is possible to insert a curve in a document. A curve shows the history of the attached
variable. Although it is not a precise measurement tool, it can give useful debug
information about synchronism between various variables.
A curve stores the 200 last values of a variable. The number of samples is not changed
when the curve item is resized in the graphic layout.

Boolean icons
A “boolean icon” item is used to display a binary state. One icon (.ICO) file is defined for
FALSE or 0 value. Another icon is defined for all other non zero values. As SpotLight
does not include an icon editor, icon files should be prepared with another tool.

Bit fields
A “bit field” item shows in a graphic panel the 32 bits of an integer value. The less
significant bit is always displayed on the right. It is not recommended to use bit field for
other data types such as real analog values, as the displayed information can lead to
confusions.

Select, move or resize items

Selecting graphic objects is needed for most of the editing commands. SpotLight
enables the selection of one or more existing objects in the chart area. To select
objects, the "select" (button with an arrow) choice must be checked in the editor
toolbar. To select one object, the user simply has to click on its symbol. To select a list
of objects, drag the mouse in the drawing area to select a rectangle area. All the graphic
objects that intersect the selection rectangle are marked as "selected". A selected
object is drawn with little black squares around its graphic symbol.
By making a new selection, any previously selected objects are unselected. To remove
the existing selection(s), simply click with the mouse on an empty area outside of the
rectangle which borders the selected objects.
To move objects, you first have to select them. Then place the mouse cursor on the
border of the selected item and drag it to other location.
To resize an object, you first have to select it. Then place the mouse cursor on one of
the small rectangles displayed in the selection border, and drag it in appropriate
direction to resize the object. Pictures can also be resize. In such case, the
corresponding bitmap or metafile is stretched to fit the new specified item rectangle.

 Group items / dissociate groups
You can group items together so that they are managed as one item. To make a group,
select items in graphic layout and run the “Edit / Group” command. The “Edit /
Dissociate” command is used to restore items of the selected group as separated
ones.
A group may contain a picture. A group may also contain another group.
When items are grouped, their style cannot be changed anymore. Items of the group
are still displayed, but cannot be used (with double click) to modify the value of attached
variables.
A group appears at just one line in the list layout.

A.18.2 The list layout

At any time, you can swap between graphic and list layout, by pressing this button. You
can also use the “Options / List - Graphic layout” command.
In the list layout, items are shown in a classical list box. The height of each item is
calculated according to its drawing style. Pictures (bitmaps and metafile) are not visible
from the list layout. A selection is available in list layout, and should be used to set item
style or change the value of a variable. Multiple selection and commands using it are not
available in this mode.

 You can re-order the items in the list using the “Edit / Move in list” commands. The
item to be moved should be selected in the list.

A.18.3 Defining the item style

The graphic style and settings of an existing item can be modified, by double clicking on
its symbol in the graphic area, or by running the “Edit / Set style” command when item
is selected in graphic or list layout. The “Style” dialog box is also opened when a new
item is added to the document. It groups the following pieces of information to be
selected by the user:

Graphic style and settings:
The display style (single text, bar graph, curve…) of an item can be changed
dynamically. When foreground and background colours are used, they can be
customised using the corresponding boxes. When style is “boolean icon”, the pathname
of corresponding .ICO files has to be specified. Use “… ” buttons close to these controls
to browse icon files existing on the disk.

Scale:
This is the maximum value that can be displayed in bar graphs and curves. For bipolar
bar graphs and curves, the same absolute value is used for both positive and negative
axis.

Variable name:
When the "Name" field is the active field, pressing the "… " button close to edit control
enables the user to find the names of the variables already declared in the project
dictionary.

Caption:
A caption can be displayed closed to the graphic item in graphic layout. You can
customise the location of the caption text (top, bottom, left or right) and its contents.
Caption can be any combination of the variable name and its value formatted as text.
Caption customisation has no effect on list layout.

Command variable:
If the "Command variable" option is set, the user can modify the value of the linked
variable during debug by double clicking on the item graphic symbol.

A.18.4 Commands of the "File" menu

The "File" menu contains commands that allow the user to manage the complete
document.

The "New" command of the "File" menu starts the editing of a new document. The
number of documents defined for a project is not limited by ISaGRAF. Before editing
the new chart, the previously opened chart is closed. The SpotLight cannot be used to
edit several charts at once. However, multiple SpotLight windows can be opened
simultaneously with each used to edit a different document.

The "Open" command of the "File" menu allows the user to close the currently edited
document and to start editing another document of the current project. The new
selected document replaces the current one in the editing window. When selecting the
new document, the "Delete" button can be used to delete an existing file, in order to
clean up the project directory. Icon and bitmap files referenced in a chart are not erased
when the chart is deleted.

The "Save" command of the "File" menu stores the currently edited document on the
disk. If it is a new untitled document, the user must give it a name before saving it.
Naming a document must conform to the following rules:
• The length of the name cannot exceed 8 characters
• The first character must be a letter
• The following ones must be letters, digits or underscore characters
• Naming is case insensitive
The "Save as" command of the "File" menu allows the user to store the currently edited
document under another name.

A.18.5 Note for ISaGRAF V3.2 users

Spotlight can read graphics and lists of time diagrams built with the tools of ISaGRAF
V3.0 or V3.2. Such files appear in the "Open" dialog box, with the description of their
origin. Files can be read and freely modified with SpotLight.
When opening an ISaGRAF V3.2 graphic, the document is automatically marked as
"Locked". Remove the "Lock" option from the "File" menu if you want to make changes
in the graphic.
When an ISaGRAF 3.2 graphic or list of time diagram is open, SpotLight always
proposes to save it in native SpotLight format. The "Save As" dialog box is
systematically open when closing such a document.

A.19 Uploading applications

ISaGRAF supports the uploading of the application stored in the target. The upload
procedure communicates with the target to load the embedded zipped source code
(EZS) and then restore the loaded project in the workbench environment.
The project running on the connected target system can be uploaded if the target
version is V3.22 or later, and if zipped source code have been embedded with the
application. Embedding source code for upload is an optional feature.

A.19.1 Uploading a project

The "Upload" dialog box is run from the "Files" command of the ISaGRAF Project
Manager. Upload does not refer to an existing project on the Workbench. The currently
selected project in project management list has no relationship with upload mechanism.
To upload the application running on the target you must:
1- ensure that the target is properly connected
2- set-up the communication parameters according to the connection link
3- press the "Run" button

Uploading embedded zipped source (EZS) and decompressing them may take few
seconds. Messages in the dialog box will inform you when upload is complete, or in
case of error.
The name used to create the ISaGRAF project is the one read in the target through
communication. If this name is already used for an existing project in the workbench,
you will be prompt to either overwrite it or select an unused name. You cannot cancel
the registration of loaded sources as a project when upload is complete. The uploaded
project is now ready and can be opened.

Possible errors
The following errors may occur when uploading a project. You are informed of the error
in the "Upload" dialog box.
- communication cannot be established with the target
- connected target is an ISaGRAF system before version 3.22
- there is no application running in the target
- there is no EZS embedded in the target

A.19.2 Communication settings

Pressing the "Set-up" button enables the user to define the parameters of the link used
for communication for upload between ISaGRAF workbench and the target ISaGRAF
system. You have to ensure that the configured parameters match to the connected
target before running upload.

A.19.3 Preparing a project for upload

You have to inform the ISaGRAF Code Generator that zipped source code must be
embedded with the application code if you want to enable upload later. For this, press
the "Upload" button in the "Compiler options" dialog box. Another dialog box enables
you to check, as an option, the embedding of zipped source code. In this case, only
minimum required source files will be embedded. Use other check boxes to embed also
optional files.

Important note: Libraries are not downloaded with embedded source code. This
includes functions and function blocks and I/O boards and equipments.

Optional files
In addition to the minimum required source code, the following files can also be
embedded. They are options as their selection leads to extra memory requirement on
the target.

Project descriptor: If not embedded, the project descriptor after upload will just indicate
the upload date.

Password protection: Upload function is not protected by a password. If you want the
uploaded project protected, you have to embed its password protection system with
source code.

Comments for not connected I/O channels: ISaGRAF gives you the possibility to enter
description text for non-connected I/O channels. Do not check this option is you work
with connected I/Os only.

History of modifications: This is the global history of modifications for the project.

Diary files: Diary file of each program contains user written notes plus the history of
compiler output messages referring to the program. Embedding diary files may
consume a lot of memory in target.

Lists of variables and time diagrams: These are the files created during debug, and
containing lists of variable names for list or time diagram monitoring.

Graphics, icons and bitmaps: This includes ISaGRAF graphics, plus all attached icon
and bitmap files, if they are located in the project directory. Warning: embedding diary
files may consume a lot of memory in target.

A.19.4 How zipped source are stored in the target

Embedded zipped source (EZS) is stored in generated code with resources. The
generated resource is called "EZS". If source code embedding is selected, you cannot
choose this name for another resource. Embedding source code does not imply any
limitation in resource definition. The user written resource definition file is not affected
by source embedding.

Please refer to the ISaGRAF documentation about the Code Generator for further
details and information about resources.

A.19.5 Memory requirements on the target

Embedded zipped source (EZS) code requires extra memory to be stored with
application code in the target. A general rough estimation is that minimum EZS (no
extra option selected for source embedding) has one and a half the size of the
executable code. This means that the embedding of EZS will multiply the size of
downloaded code by 2.5.
Special limitation may appear on some target system based on segmented memory. As
EZS are stored as resources in generated code, they must be stored in the same data
segment as the application code.

A.19.6 About uploaded project

The uploaded project contains all the files and data required for re-compiling.
Depending on the options selected during its previous compiling, it may also contain
auxiliary files such as project descriptor and program diary files.
You have to compile (make) the project before debugging or monitoring it. Warning: as
ISaGRAF uses the compiling date stamp to compare applications, you will be informed
when opening the debugger that workbench and target applications have different
version codes.

Important note: Libraries are not downloaded with embedded source code. You have
to ensure that the appropriate library functions and function blocks are installed with
your ISaGRAF workbench before re-compiling the uploaded application.

A.19.7 Compatibility issues

Upload is supported by ISaGRAF target and workbench version 3.22 or later.
Extensions have been made to the communication protocol to support upload.
There is no restriction in embedding zipped source code (EZS) in a target based on
ISaGRAF systems version 3.03 to 3.21, as EZS are stored in application code as
standard resources. But embedded information cannot be uploaded in this case, as
such target does not support required communication services.

A.20 Using the Diagnosis tool

The "Diagnosis Tool" is a subset under the ISaGRAF debugger tool. It enables the
end user to work on a predefined set of variables, in order to examine and control the
process. The ISaGRAF debugger is a very powerful tool, which includes high level
functions. The Diagnosis Tool provides a safe way to control the target application for
final running operations or maintenance. The ISaGRAF Diagnosis Tool is run directly
from the ISaGRAF group in Program Manager, by double clicking on the following icon:

The list of existing projects is displayed in a dialog box. It enables the user to run the
limited ISaGRAF debugger on an existing, already downloaded ISaGRAF application.
Pressing the "OK" button starts the limited debugger on the selected project. Pressing
the "Cancel" button closes the dialog box. The "Set-up" command is used to set-up the
communication link between the ISaGRAF Workbench and the target PLC. Refer to the
"Managing programs" chapter of this manual for more information about this
command.

Note: The ISaGRAF Diagnosis Tool (limited debugger) cannot be used to download, stop or
update the application running in the target PLC. No operation can be performed if the
project selected in the Diagnosis Tool dialog box is not the same as the one installed
and running in the PLC.

When the limited ISaGRAF debugger is run, and correctly connected to the target
application, the following commands are available:
• Spy lists of variables
• Spy graphic documents with SpotLight

A.21 Using the ISaGRAF simulator

The ISaGRAF Kernel simulator is started with the debugger when the "Simulate"
command of the "Debug" menu in the Program Management window is run. The kernel
simulator is a complete ISaGRAF target system supporting ISaGRAF standard features
and all the "C" functions and function blocks of the standard library delivered by CJ
International. The I/O boards are graphically simulated in a window. Any type of I/O
board can be simulated. The boards defined as "Virtual boards" during the I/O
connection also appear in the simulation window.

A.21.1 Links with the debugger

The kernel simulator supports full communication with the ISaGRAF debugger, so any
of the debug possibilities can be used during simulation. The kernel simulator always
works on the current ISaGRAF application. During simulation, the debugger commands
"Start", "Stop", "Download" or "Update" are no longer available. The simulator cannot
be used if the "SIMULATE" target was not selected in compiler options before building
the target code. Closing the simulator window implies that the debugger window (and
any ISaGRAF window opened during the debug session) is also closed.

A.21.2 I/O simulation

I/O boards appear in the simulator window, titled by their name and slot number. Any of
the ISaGRAF standard types of I/Os (boolean, analog or message) are handled. The
channels of the input boards are displayed with special buttons and fields. The
channels of the output boards are displayed with graphic status lights and data fields.

 Boolean inputs: A boolean input is represented by a square green button. The number
of the channel is displayed with the I/O button. The input value is TRUE when the
button is pressed. Clicking on the button changes the corresponding I/O value. Use the
right button of the mouse to set the input only when the button is pressed.

 Boolean outputs: A boolean output is represented by a small circle. The number of the
channel is displayed with the I/O. The output value is TRUE when the graphic symbol is
highlighted.

 Analog inputs: An analog input channel is a simple numerical field, where the value of
the corresponding input can be entered. Clicking on the box displays the caret. A new
value for the channel can then be entered. It is not necessary to use the ENTER key
after input. Analog inputs can be entered in either decimal or hexadecimal base. Use
up/down buttons to increase or decrease the current value.

 Analog outputs: An analog output channel is a numerical output field. The output
value can be displayed as either a decimal or hexadecimal number. No action can be
performed by the user on an output channel.

 Message inputs: A message input channel is a simple text field, where the value of the
corresponding input is entered. Clicking on the box displays the caret. A new value for
the channel can then be entered. It is not necessary to use the ENTER key after input.

 Message outputs: A message output channel is a text output field No action can be
performed by the user on an output channel.

A.21.3 Library components

The ISaGRAF simulator fully supports the standard conversions, functions and function
blocks, delivered by CJ International. Below is the list of supported objects:

 Conversion functions:
bcd, scale

 Functions:
abs, acos, ArCreate, ArRead, ArWrite, ascii, asin, atan, char, cos, delete, expt, find,
insert, left, limit, log, max, mid, min, mlen, mod, mux4, mux8, odd, rand, replace, right,
rol, ror, sel, shl, shr, sin, sqrt, tan, trunc

 Function blocks:
average, blink, cmp, ctd, ctu, ctud, derivate, f_trig, hyster, integral, lim_alrm, r_trig, rs,
sema, sr, stackint, tof, ton, tp

User defined conversions, "C" functions and function blocks are commonly not
integrated with the ISaGRAF Simulator. Typically, such objects are designed to use
software and hardware resources of the target system. Such resources are generally
not available on the Windows system. The ISaGRAF Simulator provides the following
standard behaviour for any user defined conversion, function or function block:
• When a new conversion is processed by the simulator, it is replaced by a "null"
conversion. This means that the physical value of the analog variables is always equal
to the electrical value (as entered or displayed on the Simulator panel).
• When a new "C" function or function block is run by the simulator, it does not process
any operation. The result value is not set.

A.21.4 Options

The commands of the "Options" menu enable the user to control the display of I/Os in
the simulator panel. The user can set or remove these options at any time during debug.

When the "Colour display" option is set, I/O channels are displayed as colour
bitmaps. If colours cannot be distinguished on some LCD screens, the user should
remove this option, to get pure black and white input and output graphics for I/O
channels.

When the "Variable names" option is set, a sticker is displayed beside any I/O
channel, with the name of the connected I/O variable. Removing this option enables the
user to reduce the size of the simulator panel.

When the "Hexadecimal values" option is set, any input or output analog channel is
displayed or entered in hexadecimal format.

When the "Always on top" option is set, the simulator window is always visible, even if
the input focus is on another window.

A.21.5 Saving and restoring input states

Using the ISaGRAF simulator, input channels are forced through manual operations,
acting on toggle buttons and edit controls of the simulation panel. You can at any time
use the following commands of the "Tools" menu to save and restore the state of all
input channels:

Load input scheme Set values of input channels with values stored
in a file that has been created on disk by "Save
input scheme" command.

Save input scheme Save state of input channels in a file so that they
can be restored later using the "Load input
scheme" command. File is stored in the project
directory and thus is saved with other project
files by the ISaGRAF archive utility.

Note: Only named input channels (the ones having a variable connected) are saved on disk.

A.21.6 The cycle profiler

The ISaGRAF Cycle Profiler is a powerful diagnostic tool that shows how cycle time is
distributed between various programs, functions and function blocks of an application.
This tool is very useful to have a quick diagnostic on the application performances, and
leads the programmer to the parts of code which may need optimisations.
The Cycle Profiler is run by the "Tools / Cycle Profiler" command in the menus of the
ISaGRAF Simulator window. It displays, for each program, function or function block,
the percentage of the cycle time spent to execute it:

When the "View / Average" option is set, displayed information is an average of
percentages calculated since the application has been started, or since the last time the
"View / Reset" command has been run.

If the "View / Average" option is not set, displayed information shows measurements
done during the execution of the last cycle. You can also use this feature when the
application is in "Cycle to Cycle" mode to have a set of measurements depending on
the application context.
Use the "View / Copy" command to copy program names and percentages to the
Windows Clipboard in ASCII format. Then, data can be pasted into text documents or
common SpreadSheets.

Important notes:
These are not precise measurements. Percentage calculation is based on TIC
instructions counting, taking into account various instruction execution times.
Calculation does not include the time spent in "C" functions and function blocks.
The value displayed for a function or a function block is the sum of all the "calling times"
from the application programs in the same cycle.
Time calculation is based on TIC code and does not provide reliable information if the
actual application code is generated in "C" language and built using a "C" compiler.

A.21.7 Simulation scripts

ISaGRAF simulator includes a tool to build and run simulation script. A script is
described with an easy ST like text language, and is used to automate tests with the
ISaGRAF simulator.
The simulation script editor is run by the "Tools / Simulation scripts" command of the
Simulator window. Below is the frame of the script editor:

The upper window is a text editor where script instructions are entered. It is used as
other ISaGRAF text editors and includes high level features such as mouse selection of
a variable symbol. You can use commands of the "Options" menu to set-up tab width
and select a character font.

The lower window shows all the messages output when the script is run. The
separation line between windows can be freely dragged to resize windows. The output
window can be hidden during script editing, but is automatically open each time a script
is run.

Editing scripts
Use the commands of the "File" menu to manage script files:
Newcreates a new untitled script
Open.................... loads an existing script from file
Savesaves script text and contents of output window to disk, in project

directory
Save assaves script under another name

Two files are created in the ISaGRAF project directory for each script:
<scriptname>.SCC text of the script (instructions)
<scriptname>.SCO...........contents of the output window
where <scriptname> is the name of the script. Both files are standard text files and can
be open using any other text editor.

While editing a script, you can use the "Edit / Insert symbol" command to select a
declared variable name to be inserted at the caret position.

Running scripts
Script must be checked and compiled before running it. If necessary, syntax checking
is automatically performed on a "Run" command. Use the following commands of the
"Script" menu:

Check check syntax and compile script

Run Script start execution of the script currently edited

In the case of a new untitled script, it must be saved (and a name must be entered for
it) before it is checked. In case of a named script, script is automatically saved to disk
before syntax checking.
When script is running, its contents cannot be changed. A message is displayed when
end of script is reached. You can also abort a running script using the following
command of the "Script" menu:

Abort Script.............. terminates the running script

Script execution is performed between target cycles. In the case of an infinite loop
programmed in the cycle, ISaGRAF simulator ensures that this loop is always broken
so that ISaGRAF cycles are still executed and other ISaGRAF applications are not
blocked. The ISaGRAF script interpreter decides to break script execution if the same
"label" is encountered more than once in the same target cycle. Script execution can
also be normally broken by "Cycle" or "Wait" instructions.

Script description language
Script description language is a very simple text language similar to ST, but where each
instruction is entered on a separate text line, and does not need to be terminated by a
semicolon. Use the following button of the toolbar to know the list of available
instructions and to insert a keyword at the caret position:

insert instruction (keyword and help as comments)

There are various types of instructions. First is the assignment (forcing) of a variable:
:=assignment

Other instructions allow the output of messages to the output window:
Print.....................outputs a text string or a variable value
PrintTimeoutputs current time stamp

Other instructions are used to synchronise script instructions with ISaGRAF cycle:
Cycle let ISaGRAF simulator execute one cycle
Waitwaits during a specified time

Other instructions are used to control instruction flow in the script:
Labelscan be placed anywhere in the script
Gotounconditional jump to a label
If goto..................conditional jump to a label
Endterminates script

Script language is not case sensitive. Comments can be inserted at the end of any text
line. Comments can either be written according to ST conventions (between "(*" and
"*)" characters), or prefixed by a ";" character.

":=" Assignment

Meaning: Force the value of an ISaGRAF variable. It can be an internal variable, an
input channel or an output channel.

Syntax: <varname> := <constant_expression>
<varname> = <constant_expression>

Arguments: <varname> is a valid symbol of a declared application variable, or a
directly represented I/O variable using "%" writing conventions.

<constant_expression> is a valid constant expression that matches
the type of the specified variable. For booleans, "0" and "1" can be used
instead of "FALSE" and "TRUE". For timers, the "T#" or "TIME#" prefix
can be omitted.

Notes: Input variable forced by a script does not need to be locked. The drawing
of the corresponding input channel is updated when input variable is
forced by a script.

Warning: do not force input or output analog variable attached to a conversion, as
script execution does not support conversion functions or tables.

Example: MyBooVar := 1 (* same as TRUE *)
MyIntVar := 1234

MyRealVar := 1.2345
MyMsgVar := 'Hello'
MyTmrVar := t#12s

Print

Meaning: Writes a string or the value of a variable in the output window. Text is
output as one new line at the end of text already written in output window.

Syntax: Print '<text>'
Print <varname>

Arguments: <text> is any text string expressed between single quotes

<varname> is the valid symbol of a declared application variable, or a
directly represented I/O variable using "%" writing conventions.

Notes: Output of variable values is always formatted according to IEC
conventions.

Example: Print 'Hello'
Print MyBooVar

Output: Hello
MyBoovar = TRUE

PrintTime

Meaning: Writes the current time stamp in the output window. Text is output as one
new line at the end of text already written in output window.

Syntax: PrintTime

Notes: Time stamp is formatted according to current setting of Windows System

Example: Print 'Time now is:'
PrintTime

Output: Time now is:
15:45:22

Cycle

Meaning: Suspends the execution of the script until the next ISaGRAF cycle is
performed.

Syntax: Cycle

Notes: Script instructions are executed at the beginning of an ISaGRAF cycle. If
the simulator is in "Cycle to Cycle" mode, the "cycle" instruction is
immediately followed by a cycle. The following instructions of the script
will be performed on the next "Execute one cycle" command from the
debugger.

Example: (* the ISaGRAF program copies A to B *)
A := 0
Cycle
Print B
A := 1
Print B (* no cycle performed / B not set to 1 *)
Cycle
Print B

Output: B = 0
B = 0
B = 1

Wait

Meaning: Suspends the execution of the script until a delay is elapsed

Syntax: Wait <delay>

Arguments: <delay> delay expressed according to IEC conventions for time
constant expression. The "T#" or "TIME#" prefix can be omitted. Delay
value must between 10 milliseconds and 1 hour.

Notes: Accuracy of the "Wait" instruction is not precise as it depends on the
host Windows system. Also, the delay should be considered with an
accuracy of plus or minus one ISaGRAF cycle. When a "Wait"
instruction is reached, ISaGRAF cycles are performed until the delay is
elapsed and before continuing the script execution.

Example: PrintTime
Wait 2s
PrintTime

Output: 15:45:27
15:45:29

Labels

Meaning: Labels can be placed anywhere in the script. They are used as a
destination by "Goto" instructions and allow flow control for script
instructions.

Syntax: <labelname>:

Arguments: <labelname> unique name according to ISaGRAF variable naming
conventions: limited to 16 characters, beginning with a letter, followed by
letters, digits or underscore characters. When defined, label name
should be followed by a ":" character.

Notes: No instruction should be placed on the line where a label is defined.
Label name should not be the same as a declared ISaGRAF variable
symbol

Example: (* example of a script with an infinite loop *)
loop:
PrintTime
Wait 1s
Goto loop

Goto

Meaning: Unconditional jump to a label

Syntax: Goto <labelname>

Arguments: <labelname> is the name of a label defined in the script.

Notes: Backward jumps are allowed. In case of an infinite loop, script execution
is automatically broken on each loop in order to preserve execution of
ISaGRAF cycles.

Example: Print 'Before Jump'
Goto MyLabel
Print 'Within Jump' (*never performed *)
MyLabel:
Print 'After Jump'

Output: Before Jump
After Jump

If Goto

Meaning: Conditional jump to a label. The condition is either a comparison between
two ISaGRAF variables, or a comparison between a variable and a
constant expression.

Syntax: If <var1> test <var2> Goto <labelname>
If <var1> test <constant_expr> Goto <labelname>

Available comparison tests are:
= true if both members have same value
<> true if members have different values
< true if first member is less than second
<= true if first member is less than or equal to

second member
> true if first member is greater than second
>= true if first member is greater than or equal

to second member

Arguments: <var1> <var2> are valid symbols of declared application variables, or
directly represented I/O variables using "%" writing conventions.

<constant_expr> is a valid constant expression that matches the
type of specified variable. For booleans, "0" and "1" can be used instead
of "FALSE" and "TRUE". For timers, the "T#" or "TIME#" prefix can be
omitted.

<labelname> is the name of a label defined in the script.

Notes: Backward jumps are allowed. In case of an infinite loop, script execution
is automatically broken on each loop in order to preserve execution of
ISaGRAF cycles.

Example: (* This script loops until MyVar is TRUE *)
Loop:
If MyVar = TRUE Goto TheEnd
Print MyVar
Goto Loop
TheEnd:

End

Meaning: Terminates script

Syntax: End

Notes: It is not mandatory to place an "End" instruction on the last line of the
script

Example: (* This script loops until MyVar is TRUE *)
Loop:
If MyVar = FALSE Goto Continue
End
Continue:
Print MyVar

Goto Loop

A.22 Using the Library Manager

The ISaGRAF libraries provide a standard interface between automation development
and the software or hardware capabilities of the ISaGRAF target system. There is one
library for each type of interface. The ISaGRAF Workbench Library Manager is
dedicated to the hardware supplier, or to the software engineer. He uses the library
manager to describe the ISaGRAF programming interface of the objects he creates.
The ISaGRAF Workbench Library Manager shows the elements of one of the
ISaGRAF libraries. In the left area of the window is the list of the elements of the
selected library. In the right area is the technical note (user manual) of the element
currently selected on the element list. The menus of the library manager contain the
commands to create, define or modify elements of the active library. The "File / Other
library" command allows the selection of one of the ISaGRAF libraries. The combo box
on the left of the toolbar can also be used to select a library:

A.22.1 Managing library elements

Use the commands of the "File" menu to create elements and work on existing ones in
the open library

Creating a new element
The "New" command of the "File" menu creates a new element into the selected library.
The name of the new element is entered, based on the following naming rules:
• the maximum length of a name is 8 characters
• the first character must be a letter
• the following characters must be letters, digits or '_' character
• the naming of a library element is case insensitive.

A text comment is associated to each library element. This comment is entered while
creating the element. When a new element is created, the following must be entered:
• its definition for an I/O configuration,
• its parameters for an I/O board,
• its user interface for a function or function block.

When a "C" conversion, "C" function or "C" function block is created, a complete frame
of its source code is automatically generated.

Working on existing elements
The "File / Rename" command allows the user to change the name or the comment of
the element selected from the list of elements. The "File / Copy" command allows the
user to copy the element highlighted in the active library on another element in the same
library. If the destination element already exists, all its contents are overwritten. If the
destination element does not exist, it is automatically created. The "File / Delete"
command removes the currently selected element from the active library. The following
components of the element are handled by "Rename", "Copy" and "Delete"
commands:
• technical note
• complete definition for an I/O configuration
• parameters for an I/O board or complex equipment
• interface definition for a function or function block
• source code for function and function block written in IEC language
• source code for a C conversion, a function or a function block

If the element is a "C" conversion, "C" function or "C" function block, its name is not
automatically updated in the attached source code by a "Rename" or "Copy"
command.

If the element is a function written in IEC language, the return parameter name is not
changed by a "Rename" or "Copy" command.

Setting password protection
The "File / Set password" command enables the user to define password protection
for the selected element in the open library. Refer to the "Password protection"
section, at the end of the first part in this manual for further information about password
levels and data protection. Passwords are only relative to the selected element. They
have no influence on other elements of ISaGRAF libraries.

Compiling functions and function blocks
When the library of functions or function blocks written in IEC languages is selected,
the "Verify (compile)" command of the "File" menu is used to check the syntax of the
selected element and create its object code. Functions and blocks written in IEC
languages have to be compiled without errors before they can be used in ISaGRAF
projects. This command has no effect if another library is selected.

Technical notes
The "Edit / Technical note" command allows the user to enter the technical note of the
element selected in the active library. The technical note is entered with the ISaGRAF
text editor. The technical note of an element is its user guide. It will be consulted by the
user of the element during its integration in an ISaGRAF project. The technical note on
how to use the element should contain the description of its main function, the detailed
explanation of its programming interface and parameters, and its context and limits.
The "Tools / Standard note format" command allows the user to define a standard
text format for all the elements of the currently selected library. When editing the

technical note for a new element, this format is used as a main frame. This allows the
user to optimise technical note editing.

Parameters
The parameters of an element describe the interface between the computer operations
provided by the element and the use of the element in an ISaGRAF application.
Parameters have a different meaning for each type of library element.
The parameters of an I/O configuration define the complete set of I/O boards of the
configuration, and default variable names used for I/O channels. The parameters of an
I/O board or complex equipment define the physical and logical configuration of the
board. The parameters of a function or function block define the interface of the
element, according to ST language function calling conventions. There is no parameter
for a conversion function because it uses a standard pre-defined interface.

Source code
The ISaGRAF Workbench allows the programmer to manage the source code of a
library conversion, function or function block. The source code of a function or a block
written in IEC language is a text or a diagram described with the language attached to
the function. The source code of "C" components ("C" functions, "C" function blocks
and conversion functions) is divided in two separate files: a source header that
contains the exact definition of the interface, according to the element's parameter
definition and a source code file that contains the element's operation implementation.
The ISaGRAF workbench generates the source code file when a new library element is
created. It also creates and updates the source header, based on the parameter
definition. The programmer can use the ISaGRAF text editor to complete the source
code file.

Archiving library elements
The "Tools / Archive" menu command runs the ISaGRAF archive manager to save or
restore library elements. You first need to select a library before running the "Archive
command". The archive manager shows list of elements for only one library at a time.

A.22.2 I/O configuration

The ISaGRAF I/O configuration library provides an easy way to initialise new ISaGRAF
projects with pre-defined I/O configuration. An I/O configuration defines:
• a set of I/O boards
• default values for I/O boards parameters
• default names for I/O channels

When a new ISaGRAF project is created with a library I/O configuration, the
corresponding I/O connection is automatically set, and the I/O variables corresponding
to channel names are automatically declared in the project dictionary.

The definition of an I/O configuration is made with the ISaGRAF I/O Connection tool
(the same tool used within a project). Refer to the "I/O Connection" section in this
manual for further information about how to use this tool. When inserting a new I/O

board in the configuration, all the channels of the new board are declared with standard
default names. The standard default name of an I/O channel has the following format:

<direction><type><slot_number>_<channel_number>

The first character indicates the direction of the I/O channel:
"I" input channel
"Q"output channel

The second character indicates the type of the I/O channel:
"X"........................boolean
"D"........................analog
"M"message

Below are examples of a standard I/O channel names:
IX0_7boolean input - board #0 - channel #7
QD2_4 integer output - board #2 - channel #4

The "Connect I/O channels" command of the I/O Connection Editor is used to modify
the default name attached to an I/O channel.

A.22.3 I/O complex equipment

All the channels of a single board have the same type (boolean, analog or message)
and direction (input or output). A complex I/O equipment represents an I/O device with
channels of different types or directions. A complex I/O equipment is represented as a
list of single I/O boards. It uses only one slot in the I/O connection rack list.

To define a complex I/O equipment, the user has to define the list of single boards
which define the I/O equipment. He also has to enter the detailed parameters of each
single board. The list of single I/O boards is entered through a dialog box.
Pressing the "Append" button allows the user to add a single board at the end of the
current list. The "Insert" button is used to insert a new single board before the one
currently selected in the list. The "Delete" button removes the selected single board
from the list. The "Rename" and "Parameters" button are used to change the name
and the parameters of the selected single board. Refer to the following section for a
complete explanation of single board parameters. A complex I/O equipment can group
up to 16 single I/O boards. The name of a single board (within an I/O equipment)
cannot exceed 8 characters.

A.22.4 I/O board

The ISaGRAF I/O board library defines a standard interface between the application
variables and the target hardware. During the description of the application, all the I/O
variables are connected to the channels of the target I/O boards. An ISaGRAF I/O
board is defined by a name and an "OEM key code" that identifies its supplier. Other
I/O board parameters describe the I/O board topology (number of channels, channel
direction and type), and its hardware or software configuration.

I/O board parameters
There are two different types of parameters for an I/O board: common parameters
which are defined for any ISaGRAF library board, and OEM parameters which are
specific to the board implementation, provided by the hardware supplier. Common
parameters are entered in the upper part of the I/O board parameters definition box.
These parameters (plus the I/O board name) identify the ISaGRAF standard I/O board
interface.
The "OEM key code" is a simple number that defines the hardware supplier. All the
boards defined by the same supplier must have the same OEM key code. The OEM key
code is a 16 bit unsigned word, entered in a hexadecimal format. The reserved OEM
key code for CJ International is "1".
Main parameters define the topology of the I/O board. The number of channels
defines the number of available channels on the board. The type of the board is the
type of the variables that may be connected on the channels of the board. The
direction defines whether variables connected on the board are input or output
variables.

Note: I/O variables of different types or directions cannot be grouped on the same ISaGRAF
I/O board. This feature should require a complex I/O equipment.

The OEM parameters
The OEM parameters are entered in the lower part of the I/O board parameters
definition box. These parameters are defined by the I/O board hardware supplier and
are specific to the board. There are at most 16 OEM parameters for a board. A board
may have no OEM parameters. The ISaGRAF library manager allows the hardware
supplier to define the identification and the format of each parameter, and the way the
automation programmer enters it.
The box on the left contains the list of the OEM parameters. Each parameter is
identified by a name and a logical number, from 0 to 15. The area on the right contains
the detailed description of the parameter selected on the list. A parameter is selected in
the list in order to access to its complete description. Pressing the "Clear" button resets
the parameter description, and removes it from the parameter list. Warning: this
command cannot be "undone".

The name of a parameter is used to identify the corresponding input field during the I/O
board connection if the field must be defined by the automation operator. The name of a
parameter must conform to the following rules:
• the maximum length of a name is 16 characters
• the first character must be a letter
• the following characters must be letters, digits or '_' character

The type of a parameter defines the internal format of the parameter, and its input
format during application I/O connection. Below is the list of available internal formats:
wordunsigned 16 bit word
longunsigned 32 bit word
word hexa...........unsigned 16 bit word
long hexaunsigned 32 bit word
booleanunsigned 16 bit word (only lowest bit is used)
characterunsigned 16 bit word (only lowest byte is used)
string...................array of 16 bytes containing a null-terminated string

floatsingle precision 32 bit floating value

Below are available input formats:
wordunsigned decimal word
longdecimal long word
word hexa...........unsigned hexadecimal word
long hexaunsigned hexadecimal long word
boolean"true" or "false"
charactersingle character
string...................ascii string (15 characters max)
floatsingle precision floating value

The "access" box is used to define how the parameter can be accessed by the end
user. If the "User defined" option is set, the parameter is shown as an input field during
the I/O board connection. The OEM parameter default value is used as default for the
parameter editing. If the "Hidden" option is set, the parameter is a constant and does
not appear in the I/O board connection box. The OEM parameter default value defines
the value of the constant parameter. The "Read only" option indicates that the
parameter is visible for the user, but cannot be modified. Its default value is used as a
constant value.

A.22.5 Functions and blocks written in IEC languages

ISaGRAF handles a library of functions and function blocks written in IEC languages.
The available languages to describe such a function or block are FBD (Function Block
Diagram), LD (Ladder Diagram), ST (Structured Text) or IL (Instruction list). Note that
LD and FBD languages can be mixed in the same diagram. SFC language (Sequential
Function Chart) cannot be used to describe a function or a block in library. The
language attached to a library element is selected when the function is created, and
cannot be changed later.

Compiling
Functions and blocks defined in the library must be compiled (verified) before they can
be used within an ISaGRAF project. Nothing else has to be changed on the Library side
concerning functions and blocks. Elements of the library will automatically appear in box
selection menu when using the LD/FBD graphic editor within a project.

A function defined in the library can call other functions of the library. However, the
ISaGRAF system does not support recursive function calling. A function block
written in IEC language cannot call other function blocks (neither in IEC nor in "C"
language).

Entering source code
The source code of a library function or function block is entered using standard
ISaGRAF tools: graphic editor for LD or FBD programs, text editor for ST or IL
programs. Refer to the corresponding sections in this manual for more information
about these tools. The ISaGRAF Code Generator can be directly called from the
graphic or text-editing window, to compile the source code of a library function or block.

Dictionary of local variables
A library function or function block can have local variables, and local defined words. To
access the variable declaration, the user must run the commands of the "Dictionary"
command of the "File" menu, in the editor window, while editing the source code of the
function.

A library function or function block cannot access a global variable or function block
instance. Local variables of a function should be initialised in the function body.

Local variables of a function block written in IEC language are copied (instanced) each
time the block is used in a project. Local variables of an instance keep their values from
one call to the other.

Defining the interface
Functions or function blocks may have up to 32 parameters (input or output). A function
always has one (and only one) return parameter, which must have the same name as
the function, in order to conform to ST language writing conventions.
The list in the upper left side of the window shows the parameters, in the order of the
calling model: first the calling parameters, last the return parameters. The lower part of
the window shows the detailed description of the parameter currently selected in the list.
Any of the ISaGRAF data types may be used for a parameter. The return parameters
must be located after calling parameters in the list. Naming parameters must conform to
the following rules:
• the length of the name cannot exceed 16 characters
• the first character must be a letter
• the following characters must be letters, digits or underscore character
• naming is case insensitive

The "Insert" command is used to insert a new parameter before the selected
parameter. The "Delete" command is used to erase the selected parameter. The
"Arrange" command automatically rearranges (sorts) the parameters, so that the return
parameters are put at the end of the list.

A.22.6 "C" Functions and function blocks

The "C" functions and function blocks are computer functions called from the
automation application, according to the ST language function calling interface.
Functions are synchronous processes. The ISaGRAF target application is suspended
during the function execution. Function blocks associate operations and static hidden
data. For example, a "counter" function block represents the counting operation, as well
as the counting result. Functions and function blocks may be used to complete the
standard automation language capabilities, or to access system resources.

The parameters definition box is used to define the name and the type of each calling or
return parameter of the function or function block. The "Edit" menu commands are
used to define the parameters of the selected function or function block. A function can
have up to 31 calling parameters, and always has one return parameter. A function

block can have up to 32 parameters, with any mix of call and return parameters. Below
is the correspondence between ISaGRAF types and "C" types:

BOOLEAN unsigned long unsigned 32 bit word: 1=true / 0=false
ANALOG long signed integer 32 bit word
REAL float single precision floating value
TIMER unsigned long unsigned integer 32 bit word (unit is 1 ms)
MESSAGE char * character string.

When a message value is passed onto a "C" function or function block, it cannot
contain null characters. The string passed to the "C" code is null-terminated.
Refer to the ISaGRAF Target User's Guide for further information on how to manage
the "C" source code of a function or a function block, and how to integrate a new
element in the ISaGRAF target system.

A.22.7 Conversion functions

A conversion function is a "C" function called by the ISaGRAF I/O manager each time
the analog variables using this conversion are input to or output from the project.
The function creates the relationship between the electrical value of the variable (read
on the input sensor or sent to the output device) and its physical value (used in the
application expressions). The function is therefore divided into two parts: input
conversion and output conversion. The ISaGRAF library manager allows the user to
control the "C" source code of a conversion function.
A conversion can be used for an integer or real analog variable. This implies that the
conversion function interface is always defined by floating values. The interface is the
same for any conversion function. The "C" definition of this interface is made in the
"TACN0DEF.H" definition file.
Refer to the ISaGRAF Target User's Guide for further information on how to manage
the "C" source code of a conversion function, and how to integrate a new element in the
ISaGRAF target system.

A.23 Using the Archive utility

The ISaGRAF archive utility enables the user to save the ISaGRAF projects and
libraries on diskettes or backup directory. The ISaGRAF archive manager is a dialog
box that can be called from ISaGRAF Project Management or Library Management
windows.

To create and maintain reliable archives, it is suggested that the following guidelines be
used:
• Write the name and description of the saved object on the disk sticker
• Do not save projects and libraries on the same diskette
• Do not save different projects on the same diskette

A.23.1 Calling the archive manager

The "Archive" dialog box can be called from the "Tools / Archive" menu of the Project
Management window, to save or restore either a project, or common data.
The "Archive" dialog box can also be run from the "Tools / Archive" command of the
ISaGRAF Library Manager, to save or restore elements of the library currently selected
in the Library Management window.

Projects
A project is always saved in its entire form. All the components of the project (program
source files, object code and application executable code) are saved together in the
same archive file. Selection of the "compression" option reduces the size of the project
archive.

Library elements
The elements of ISaGRAF libraries can be saved individually. All the components of a
library element (technical note, definition, interface, source code...) are saved together
in the same archive file.

Common data
The "Tool / Archive / Common data" command of the Project Management window
enables the user to backup or restore the "common range" data existing in the
ISaGRAF Workbench. This command does not act on the ISaGRAF libraries. Below is
the list of the files that can be copied with this command:
common.eqvcommon defined words
oem.batuser defined MS-DOS command file

These files are saved one by one on the archive disk, in their original form. The
corresponding archive files are never compressed.

A.23.2 Options

The path used for ISaGRAF archives is displayed at the bottom of the dialog box. Press
the "Browse" button to browse the disks and select another archive disk and directory.

When the "Compression" option is set, all the archive files created during a "Backup"
procedure are compressed. This option is very useful to reduce the size of a large
project archive file, and save it on only one diskette. Archive compression is generally
not needed for library components. The ISaGRAF Archive Manager automatically
recognises the status of an archive file (compressed or not) when restoring the archive.
This implies that the "compression" option has no effect for a "Restore" procedure.

A.23.3 Backup and restore

The "Workbench" list (on the left) shows the objects existing in the ISaGRAF
Workbench installed on the hard disk. The "Archive" list (on the right) shows the
objects saved on the specified archive disk and directory.

Backup
Saving an object on archive is achieved by selecting the object in the list on the left
(objects of the ISaGRAF workbench) and pressing the "Backup" button. More than one
object on the list can be selected. The "Backup" button is disabled when an element is
selected from the list on the right (restore mode).

Restore
Copying an object from the archive to the ISaGRAF Workbench is achieved by
selecting the object in the list on the right (archive objects) and pressing the "Restore"
button. More than one object on the list can be selected. The "Restore" button is
disabled when an element is selected from the list on the left (backup mode).

A.23.4 Archive files

The ISaGRAF archive manager creates a unique archive file for each saved object. The
archive file has the same name as the object. Its file suffix indicates its type. Below are
the used suffixes:
.pia.......................project
.bia.......................I/O board
.iia........................function in IEC language
.aia.......................function block in IEC language

.uia.......................C function

.fia........................C function block

.cia.......................C conversion function

.riaI/O configuration

.xia.......................I/O equipment

A.24 Printing a complete document

The ISaGRAF Document Generator allows the user to build and print a complete
document for the selected project. It can be called by the "Project / Print" commands
of the Project Management or the Program windows to print a complete document. The
Document Generator is also run by the "Print" command of all other ISaGRAF editors
to print the contents of a single ISaGRAF document. However, the Document
Generator provides the same features in both cases.
The commands of the "Edit" menu are used to define the elements of the project that
must be inserted in the document. Doing this the user builds the "table of contents" for
the desired document. Any information about the project (programs, variables, options,
I/O connection...) may be inserted in the project document. No information from another
project or from ISaGRAF libraries may appear in this document.

The "File / Print" command generates the document and send it to the printer,
according to the specified table of contents. The "Print" job may take few minutes to
build and format the document. It is highly recommended to wait until "Printing Job" is
done in the ISaGRAF Document Generator window, before running other commands of
the ISaGRAF Workbench. Building the whole document may require a large space on
the hard disk. An error message will be displayed if the disk is full. In such a case, the
user will have to either free up disk space by removing files, or reduce the size of the
print job. When the "Print" command is run, a dialog box appears. It allows the user to
enter a note describing the actual print command. Those notes are stored in a history
file, and will be printed on the first page of any future document (including the present
one).

A.24.1 Customising the table of contents

The "Edit" menu contains the commands to define the "Table of Contents" of the
document. A choice of commands allow the user to use a default table (with all the
components of the project), build a specific table (with only some components) or move
items in the table and modify it.

The default list
The "Default list" command of the "Edit" menu defines a standard table of contents for
the document, which includes all the components of the project. The standard table
consists of:
- Project descriptor
- Hierarchy tree (links between programs)
- Source code for any program
- Diary file for any program
- Common definitions
- Global definitions
- Local definitions for any program
- Global variables
- Local variables for any program
- Application options

- I/O Connection
- Lists of variables
- Conversion tables
- Condensed cross references
- Detailed cross references
- Declaration summary
- Network addresses map
- History of modifications

The table of contents can be saved on disk using the "File / Save" command. This
command is greyed when document generator is run from an ISaGRAF editor to print a
single document.

 Cut and paste
Use "Edit / Cut" and "Edit / Paste" commands to move items in the list, in order to
customise the order of the table. The Document Generator allows multiple selection so
that a group of items may be cut and pasted.

Clearing the table
Use "Edit / Clear" command reset the table of contents, so that it can be totally rebuilt
using single item insertion.

Inserting items in the table
When the "Edit / Insert" command is run, the "Add item" dialog box appears. It allows
the user to insert items (components of the project) into the table of contents.
For an item relative to a program, use the "Program" combo box to select a program
name. Press the "Add" button to insert the selected item to the table of contents. The
same item can appear only once in the table.

A.24.2 Options

The commands of the "Options" menu are used to define and customise the format of
the generated document. Other options are directly available from buttons of the
Document Generator window:

When the "Font page" option is set, a header page is printed at the beginning of the
document, containing the project title and the history of printouts. When this option is
not set, the first item to be printed starts on the first page.
When the "Table of contents" option is set, a table of contents is printed at the end of
the generated document.
Both options are initially unchecked when the Document Generator is run from a "Print"
command of an ISaGRAF editor (program, dictionary...)

SFC charts

The "Separate SFC levels" option directs the system to print, for each SFC program,
first the level 1 of the SFC (chart and comments), and then the level 2 programming.
When this option is not checked, levels 1 and 2 appear together on the same printout.

Page format
The "Page format" command of the "Options" menu is used to define the main
parameters operated by the Document Generator when formatting a page. The following
parameters can be specified:
• Left margin: (1 or 2 centimeters, or no margin)
• Page border: When this option is selected, a border is drawn around any printed
page.

Page title template
The "Page Title" command of the "Options" menu is used to define the contents of the
title box printed at the bottom of any page. The standard layout of this box is as follows:

ISaGRAF - Project 'PrName'

User defined title

date

page

Text1
Text2

Text3

The first line of the main title (with the name of the ISaGRAF project), the current date
and the page number are automatically generated by the Document Manager, and
cannot be changed.
The three lines of text on the left side of the box (text1, text2, text3) and the second line
of the main title are user-defined. The user also can change the logo printed in the box
on the left. To use another logo, the user has to specify the pathname of a bitmap image
file (.BMP). The image can have any dimension. It will be stretched or shrunk,
according to the exact dimensions of the printed page. Clicking on the logo area, in the
dialog box, shows the new specified image. The image file must be on the disk (at the
specified directory and with the specified filename) when the "Print" command is run.

 Selecting character fonts
The "Text font" and "Title font" commands of the "Options" menu are used to define
the fonts of characters used when printing text, and titles for any item of the document.
The size and style of characters may also be selected for text and titles. The selection
of a font is made with the standard dialog box defined by Windows. Any text (literal
programs, names within diagrams...) will be printed with the selected size, style and font
of characters. Only titles will be printed with the font selected for titles.
If the fonts of characters are not defined, the standard font of the printer will be used for
any text, with the following styles:
• "Normal" style for texts and names within diagrams
• "Bold" style for titles

A.25 Password protection

The ISaGRAF Workbench includes a full data protection system, which enables the
user to protect with passwords projects and library elements. A library element can be
an I/O configuration, an I/O board or complex equipment, a function or function block
written in IEC languages, a "C" function, function block or conversion function. A
password protection database is dedicated to one project or library element, and cannot
be shared between several ones.

Protection levels
Within one project or library element, the user can define up to 16 access levels,
corresponding to different passwords. Access levels are sorted in a hierarchy system.
They are numbered from 0 to 15. The higher access level is numbered 0. When a user
knows a password, he can access all the items protected by the corresponding access
level, plus all the ones protected with lower levels. Each elementary command or data of
a project or library element can be separately protected with an access level. For
example, the "Make application code" command from the ISaGRAF menus can be
protected separately. Elementary data can be a program, a list of options, the technical
note of a library element, etc...

Defining password protection
The "Set password" command of the ISaGRAF menus is used to define the
passwords and access levels for one project or one library element. This command is
called from the menus of the ISaGRAF Project Manager (for a project), or the ISaGRAF
Library Manager (for a library element). No password is required when first running this
command. If passwords are already defined, the user must enter the highest level
password he knows, before accessing this command. Upper level passwords and
protected items then cannot be modified. The "Set password" command enables the
user to define the passwords corresponding to the different access levels, and to
protect elementary commands or data with the defined levels.
Passwords (corresponding to protection levels) are entered by double clicking on a line
of the upper list. The following box is used to enter a password.

The list in the lower area shows the different items (data or functions) which can be
protected, and current protection level attached to either "read access" or "full access"

permissions. Assigning a protection level to "read" permission enables you to prevent
users without sufficient permission even to open or print a document.
Double click on a line in the lower list to set permissions for the selected item or data.
The following box is open:

Both permissions can be set either to "free access", or to a protection level defined by a
password. Full access permission cannot be attached to a level with less priority than
the one selected for read access.
Note that for some documents, naturally visible when using ISaGRAF Workbench,
such as project descriptor, read access cannot be protected with a password.

Accessing protected data
No password or user's name is asked when the Workbench is started. Each time a
user wants to have access to a protected data or function, he must enter the required
password in a dialog box.
If the user enters the required password (or a password attached to a higher access
level), he can continue normally. Each time a password is entered by the user, it is
stored in memory, so the user will not have to enter it again later. Stored passwords are
held each time an ISaGRAF tool is run from another ISaGRAF tool (for example, the
Project Manager runs the Program Manager). Stored passwords are lost when the last
remaining ISaGRAF window is closed. Passwords entered during project editing, or by
using the Library Manager, or by using the Archive manager cannot be shared. If the
user enters a bad password, he cannot run the selected function.

Links with the archive manager
When saving an object (project or library element) on archive disk, the data protection
item named "Backup on archive" is invoked. This corresponds to the data protection
system attached to the object in the Workbench (hard disk). No test is performed on the
data protection system of the object on the archive disk if it already exists. The
"Backup" command of the ISaGRAF Archive Manager saves the data protection
information with the object on the archive disk.
When restoring an object which already exists in the Workbench (hard disk), the data
protection item named "Overwrite with archive" is invoked. This corresponds to the
data protection system attached to the object in the Workbench (hard disk). No test is
performed on the data protection system of the object on the archive disk. If this
command is validated, the restored data protection information will then replace the
existing one on the hard disk.

Setting individual protection for variables and I/O channels
The ISaGRAF workbench provides a complete data protection system based on
hierarchised passwords. Variable declaration and I/O connection can be globally
protected by a password. Additionally, ISaGRAF enables you to set individual protection
to any variable or I/O channel. This assumes that:
- passwords are already defined in the password definition system (use the "Project /
Set password" command of the Project Management window) so that protection levels
are available for individual protection.
- you use protection levels with higher priority for individual protection compared to
global variable or I/O protection.

When a variable or an I/O channel has individual protection, a small icon is draw close
to its name in dictionary or I/O connection window.
Use the "Set protection" and "Remove protection" commands of the "Edit" menu in
dictionary or I/O connection windows to set or remove an individual protection for
selected variable or channel. Both commands ask you to enter a valid password so that
a protection level can be attached to the variable or channel. Then, each time you want
to change a variable or a connection to a channel having individual protection you must
enter a password with sufficient priority level.

Warning: if a variable or channel is protected with a level, and the corresponding password is
removed from protection system, and if no higher level password is defined, variable or
channel cannot be changed anymore unless a new password with sufficient level is
defined.

A.26 Advanced programming techniques

This chapter contains more information about the ISaGRAF Workbench and target
system. The user is advised to be familiar with the ISaGRAF tools and methods, before
reading this section.

A.26.1 More about ISaGRAF tools

When using the ISaGRAF editing tools, the user can press the right mouse button to
open a popup menu, which contains the main editing commands. The menu is opened
at the current position of the cursor. This is very useful to reduce mouse operations
during cut and paste commands.
The ISaGRAF tools support multiple execution. Although same tool cannot be
opened twice to edit the same document, it is possible to open different windows with
the same tool and edit different objects as parallel operations.
Other commands are available to find information about graphic buttons in toolbars.
Double click an empty area of a toolbar to display the contents of the toolbar as a popup
menu. Stay with the mouse cursor on a graphic button displays the corresponding text
command.

A.26.2 Locked I/Os and virtual I/Os

Defining an I/O board as virtual disconnects the processing of the physical I/O
channels. When a board is defined as virtual, the ISaGRAF kernel operations are not
changed. The only difference is that input sensors are not read and output devices are
not updated. In this mode, it is possible to use the ISaGRAF debugger to modify the
input values. The Virtual attribute applies to a complete board. It is programmed during
the I/O board definition, before the application code generation. The virtual attribute is
a static feature, and is stored when the application is stopped and restarted.
Another possibility is the I/O variable locking. It consists of disconnecting one physical
device and the corresponding ISaGRAF I/O variable. Variable locking and unlocking is
performed through the debugger. Variable locking is a dynamic operation, and is not
memorised when the application restarts. The lock operation applies to only one
variable (one I/O channel) at a time. This is the summary of main I/O controlling
features:

Virtual Attribute Lock command
selection tool I/O board connection debugger
definition static dynamic
selection mode board variable
application validation and tests maintenance

The following chart explains the I/O data flow between the ISaGRAF tasks:

Run time
Kernel
applicationI/O driver

User OEM

INPUTS
DATA
BASE

OUTPUTS
DATA
BASE

Debugger

I/O diver
User OEM

Input
devices

Output
devices

When an input variable is locked, the various accesses to the database are not
changed, but the input device is disconnected. Input values can be set with the
debugger and processed by the ISaGRAF kernel:

User OEM
(user oem key)

Not
locked

INPUTS
DATA
BASE

Input
devices

Run time
Kernel
application

Debugger

When an output variable is locked, the run-time kernel and the output driver are
disconnected. In this case, access is still possible to the output device, via the output
driver, with the ISaGRAF debugger:

Run time
Kernel
application

OUTPUTS
DATA
BASE

Debugger

User OEM
(user oem key)Not

locked

Output
devices

When setting the virtual attribute for an input the input database and the associated
input devices are disconnected. A virtual I/O driver replaces the real one.

Not
virtual

Virtual OEM
(oem key 0)

User OEM
(user oem key)

INPUTS
DATA
BASE

Input
devices

Run time
Kernel
application

Debugger

Setting the virtual attribute follows the same rules for an input board or an output board.
For output boards, the ISaGRAF kernel updates the output database. This database
and the associated output devices are, however, disconnected. A virtual I/O driver
replaces the real one.

Run time
Kernel
application

OUTPUTS
DATA
BASE

Debugger

Virtual OEM
(oem key 0)

User OEM
(user oem key)

Not
virtual Output

devices

To summarise all possibilities:

Not
virtual

Run time
Kernel
application

Virtual OEM
(oem key 0)

User OEM
(user oem key)

Not
locked

INPUTS
DATA
BASE

OUTPUTS
DATA
BASE

Debugger

Virtual OEM
(oem key 0)

User OEM
(user oem key)

Not
locked

Not
virtual

Input
devices

Output
devices

A.26.3 PC-PLC link validation

Most of the problems related to poor communication between the ISaGRAF workbench
and the target PLC are represented in the debugger window by the "disconnected"
status message. Before any diagnostic tests are performed, the communication should
be validated when no application is active in the target PLC. This way the serial
communication link can be validated on its own, isolating it from execution related
effects.
The "C" language, used for description of the conversion functions and C functions,
allows direct access to the target system. A programming error in such a software
component may generate system errors or incorrect ISaGRAF system behaviour. Such
problems may occur when I/O drivers are developed with the ISaGRAF I/O toolkit.
System errors, for example, may be caused if an I/O board is connected on an invalid
bus address. The following table gives a synthetic summary of error diagnostics:

status context Diagnostic
"disconnected"

(before download)
- target is not running
- no cable / invalid cable
- invalid link parameters
- ISaGRAF target badly installed

"disconnected"
(after download)

cycle to cycle
starting mode

- invalid I/O configuration
- system crash

real time
starting mode

- invalid I/O configuration
- system crash (due of "C" programming)

"no application" - application not downloaded
- application not started
 (due of "C" programming)
- Intel/Motorola mismatch
- Invalid target version

A.26.4 ISaGRAF directories

The ISaGRAF Workbench works on a dedicated disk directory structure. The root
directory of this architecture is specified by the user during the installation of ISaGRAF.
The default name for the ISaGRAF root directory is ISAWIN. This is the standard disk
architecture created by the installation program:

\ISAWIN APL

COM

EXE

LIB

TMP

CREATION

PROJECT1

PROJECT2

OBJS

RELS

DATA

SRC

DEFS

RELS

DEV

FNC

FBL

IOC

These are the standard ISaGRAF sub-directories

DIRECTORY CONTENTS

APL root directory for the ISaGRAF projects
each project corresponds to one sub directory
which contains all the data of the project
other directories may exist for other project groups. ISaGRAF
installation program creates "SMP" directory where are stored
samples applications.

COM "common" range data
Data can be used by any project

EXE ISaGRAF programs and help files
LIB ISaGRAF libraries:

- lists of elements
- parameters or interface for each element
- technical notes

LIB\IOC source code for I/O configurations
LIB\FNC source code of functions written in IEC languages
LIB\FBL source code of function blocks written in IEC languages
LIB\SRC source code for conversions and C functions
LIB\DEFS source header for conversions and C functions
LIB\RELS Conversions and C functions object code
LIB\DEV command files for developing "C" libraries

makefiles, link lists, etc...
TMP Temporary files: sub-directories of TMP are reserved for the

ISaGRAF Code Generator and cannot be deleted.

The sub-directories can be moved to other disk locations. When the user has a non-
standard architecture, the pathnames of the sub-directories should be declared in the
WS001 section, in the ISA.ini initialisation file, in the EXE sub-directory of ISaGRAF.
Here are the entries of the WS001 section:

Isa root directory for ISaGRAF architecture
IsaExe root directory for ISaGRAF programs and help files

IsaApl root directory for ISaGRAF projects
IsaTmp directory for temporary files
IsaSrc directory for library source code
IsaDefs directory for library source headers

Note that if you change the IsaTmp entry to another directory, you must create the sub-
directories OBJS, RELS and DATA in the new directory. The following example uses
the entries of the WS001 section to redefine the standard ISaGRAF disk architecture:

;file c:\ISAWIN\EXE\ISA.ini

[WS001]
Isa=c:\isawin
IsaExe=c:\isawin\exe
IsaApl=c:\isawin\apl
IsaTmp=c:\isawin\tmp
IsaSrc=c:\isawin\lib\src
IsaDefs=c:\isawin\lib\defs

When you want to add "C" functions or function blocks to the ISaGRAF target, the
\ISAWIN\LIB\DEV directory is used to store development files: command files,
makefiles, maps, etc... The \ISAWIN\LIB\RELS directory is used to store the object
files generated during "C" compiling, and the ISaGRAF "C" libraries required for LINK
operations.

A.26.5 Application symbols

Each object of an ISaGRAF application is referenced by a name (entered during
variable declaration) and an internal virtual address, calculated by the code generator.
The virtual address of a variable is not its network address entered during the
declaration of the variable. Virtual addresses are used for communication work, and
special "C" applications using the OEM option. When the ISaGRAF code generator is
run, it makes an ASCII file with the logical correspondence between names and virtual
addresses for all the objects (variable, programs, steps...) of the project. This file can
be easily interrogated for information about the ISaGRAF static database from any
user's application. The file is named "APPLI.TST" and is located in the directory of the
ISaGRAF project: "\ISAWIN\APL\proname" (proname is the name of the project). This
section describes the detailed format of the "APPLI.TST" file. The main notations used
for the following descriptions, is shown below:

VA virtual address
ATTR attribute of a variable
USP "C" function

Possible values for the attributes of a variable are shown below. Such values occur in
the "attributes" fields:

+X internal variable
+C read-only internal variable
+I input variable

+O output variable

All the numbers, except virtual addresses, are expressed as decimal integers. The
virtual addresses (VA) are expressed as hexadecimal 4 digit numbers, and are
preceded by the character "!". For example:

123 this is a decimal number
!A003 this is an hexadecimal virtual address

The main structure of the file "APPLI.TST" is shown below. The file is structured as a
list of blocks. A block is a list of records. Each record is described on one line of text.
Each block begins with a header, put on one line of text.

Start block
description blocks
end block

The general syntax of one block is shown below:

@ <block_name> <arguments>
#record...
#record...
...

The structure of the first block, containing the main information about the application, is
shown below:

@ISA_SYMBOLS,<appli_crc>
#NAME,<appli_name>,<version>
#DATE,<creation_date>
#SIZE,G=<nbprg>,S=<nbstep>,T=<nbtra>,L=0,P=<nbpro>,V=<nbvar>
#COMMENT,cj international

appli_crcapplication symbols checksum
appli_name.........name of the application
version................ISaGRAF workbench version number
creation_dateapplication generation date
nbprgnumber of programs
nbstepnumber of SFC steps
nbtra....................number of SFC transitions
nbpronumber of "C" functions used
nbvar...................total number of variables

The structure of the last block, which signals the end of the file, is shown below:

@END_SYMBOLS

The structure of the block used to describe the programs of the application, is shown
below:

@PROGRAMS,<nbprg>
#<va>,<name>

#...

nbprgnumber of programs defined in this block
va.........................virtual address of the program
nameprogram name

The structure of the block used to describe the SFC steps of the application is shown
below. Note that there is one virtual step defined for each non-SFC program:

@STEPS,<nbsteps>
#<va>,<name>,<father>
#...

nbstepsnumber of steps defined in this block
va.........................virtual address of the step
namestep name
father...................virtual address of the father

The structure of the block used to describe the SFC transitions of the application, is
shown below:

@TRANSITIONS,<nbtrans>
#<va>,<name>,<father>
#...

nbtransnumber of transitions defined in this block
va.........................virtual address of the transition
nametransition name
father...................virtual address of the father

The structure of the block used to describe the boolean variables of the application, is
shown below:

@BOOLEANS,<nb_boo>
#<va>,<name>,<attr>,<program>,<eq_false>,<eq_true>
#...

and if variable number exceeds 4095:

X#(1.<varno>),<name>,<attr>,<program>,<eq_false>,<eq_true>

nb_boo................number of variables in this block
va.........................virtual address of the variable
varno...................range of the address (within boolean data type)
namename of the variable
attrattribute of the variable
programvirtual address of the parent program
.............................or "!0000" for a global variable
eq_falsestring used for false value
eq_true................string used for true value

The structure of the block used to describe the analog variables of the application, is
shown below:

@ANALOGS,<nb_ana>
#<va>,<name>,<attr>,<program>,<format>,<unit>
#...

and if variable number exceeds 4095:

X#(2.<varno>),<name>,<attr>,<program>,<format>,<unit>

nb_ananumber of variables in this block
va.........................virtual address of the variable
varno...................range of the address (within analog data type)
namename of the variable
attrattribute of the variable
programvirtual address of the parent program
.............................or "!0000" for a global variable
format= "I" for an integer variable
.............................= "F" for a real variable
unitunit string

The structure of the block used to describe the timer variables of the application, is
shown below:

@TIMERS,<nb_tmr>
#<va>,<name>,<attr>,<program>
#...

and if variable number exceeds 4095:

X#(3.<varno>),<name>,<attr>,<program>

nb_tmrnumber of variables in this block
va.........................virtual address of the variable
varno...................range of the address (within timer data type)
namename of the variable
attrattribute of the variable (always +X: internal)
programvirtual address of the parent program
.............................or "!0000" for a global variable

The structure of the block used to describe the message variables of the application, is
shown below:

@MESSAGES,<nb_msg>
#<va>,<name>,<attr>,<program>,<max_len>
#...

and if variable number exceeds 4095:

X#(4.<varno>),<name>,<attr>,<program>,<max_len>

nb_msg...............number of variables in this block
va.........................virtual address of the variable
varno...................range of the address (within message data type)
namename of the variable
attrattribute of the variable
programvirtual address of the parent program
.............................or "!0000" for a global variable
max_lenmaximum length (declared capacity)

The structure of the block used to describe the "C" functions used in the application, is
shown below:

@USP,<nb_usp>
#<va>,<name>
#...

nb_uspnumber of C functions in this block
va.........................virtual address of the C function
namename of the C function

The structure of the block used to describe the "C" function block instances used in the
application, is shown below:

@FBINSTANCES,<nb_fb>
#<va>,<inst_name>,<fb_name>
#...

nb_fbnumber of instances of a C function blocks in this block
va.........................virtual address of the C function block instance
inst_name...........name of the C function block instance
fb_name..............name of the reference C function block

A.26.6 Limits of ISaGRAF "LARGE" (WDL) workbench

There are some limitations for the objects used in the ISaGRAF Workbench. Of course,
many other practical limits are due to the configuration of the computer used (available
memory and disk space), and the capabilities of the ISaGRAF target system (available
memory, available hardware and software resources...). The following numbers
absolute limits that cannot be exceeded.

For a project:

Object Maximum Notes
Programs 255 grouping main,

sub and child programs
Levels in the hierarchy 20

The number of projects installed on the Workbench is only limited by the available
space on the hard disk.

For names:

Name for: Maximum Notes
Project 8 char
Program 8 char
Variable 16 char + 60 characters for comment
Defined word label 16 char
Defined equivalence 255 char + 60 characters for comment
Conversion table 16 char
List of variables 16 char
function / f.block (lib) 8 char this applies to C functions,

C function blocks
or functions written in IEC languages

function parameter (lib) 16 char this applies to C functions,
C function blocks
or functions written in IEC languages

IO board 8 char
IO configuration 8 char
Board oem parameter 16 char
Conversion function 8 char

Editing (for one program):

Object Maximum Notes
SFC rows 600
SFC columns 20
SFC steps 4095 for the whole project, grouping steps,

initial steps,
beginning and ending steps

SFC transitions 4095 for the whole application
LD/FBD editing 200 cols

2000 rows this is the size of the editing area
in cell units.

Quick LD editing no limit limits are imposed by the PC capacity
IL labels 251 in the same IL program
Text editing 40KBytes or less according to

the system configuration

For the dictionary (for one project):

Object Maximum Notes
Boolean variables 65535
Analog variables 65535 grouping integer and real variables
Timers 65535
Message variables 65535
Defined words 4095 in the same list (same range)
Defined words 255 used in the same program
Conversion tables 127 used in the application
Points in one table 32 defined in the same conversion table

The limits given for maximum number of boolean, analog or message variables group
internal, input and output variables. It also includes all hidden temporary or variables
allocated by compilers. The number of variables edited together (same type, same
scope), in the dictionary editor cannot exceed 16000. Depending on PC configuration,
the limit can be less than 16000. The application cannot run on an ISaGRAF target
version V3.21 or earlier if the total number of variable for one type exceeds 4095. The
standard "Modbus" link using network addresses does not cannot be used if number of
variables for one type exceeds 4095.

IO connections:

Object Maximum Notes
IO Boards 256 defined for the same application

(boards or complex equipments)

Number of I/O boards including single boards and items of complex equipments cannot
exceed 256.

IO channels 128 on the same board

For libraries:

Object Maximum Notes
Functions (IEC lang.) 255 installed together in the library
Function blocks
(IEC lang.) 255 installed together in the library
C functions 255 installed together in the library
C function blocks 255 installed together in the library
function blocks
instances 4095 for the same type of function block

in the same application
Function input parameters 31 this applies to C functions and

functions written in IEC languages
Function block parameters 32 freely distributed between input and

output parameters.
At least 1 output parameter
is required.

Conversion function 128 installed together in the library
IO configurations 255 installed together in the library
IO boards 255 installed together in the library
Complex IO equipt. 255 installed together in the library
Board oem parameters 16

B. Language reference

B.1 Project architecture

An ISaGRAF project is divided into several programming units called programs. The programs of
the project are linked together in a tree-like architecture. Programs can be described using any of
SFC, FC (Flow Chart), FBD, LD, ST or IL graphic or literal languages.

B.1.1 Programs

A program is a logical programming unit, which describes operations between variables of the
process. Programs describe either sequential or cyclic operations. Cyclic programs are
executed at each target system cycle. The execution of sequential programs follows the dynamic
rules of either the SFC language or the FC language.

Programs are linked together in a hierarchy tree. Programs placed on the top of the hierarchy are
activated by the system. Sub-programs (lower level of the hierarchy) are activated by their father.
A program can be described with any of the available graphic or literal following languages:

Sequential Function Chart (SFC) for high level programming
Flow Chart (FC) for high level programming
Function Block Diagram (FBD) for cyclic complex operations
Ladder Diagram (LD) for boolean operations only
Structured Text (ST) for any cyclic operations
Instruction List (IL) for low level operations

The same program cannot mix several languages, except LD and FBD can be combined in one
diagram.

B.1.2 Cyclic and sequential operations

The hierarchy of programs is divided into four main sections or groups:

Begin programs executed at the beginning of each target cycle
Sequential programs following SFC or FC dynamic rules
End programs executed at the end of each target cycle
Functions set of non-dedicated sub-programs

Programs of the 'Begin' or 'End' sections describe cyclic operations, and are not time dependent.
Programs of the 'Sequential' section describe sequential operations, where the time variable
explicitly synchronises basic operations. Main programs of the 'Begin' section are systematically
executed at the beginning of each run time cycle. Main programs of the 'End' section are
systematically executed at the end of each run time cycle. Main programs of the 'Sequential'
section are executed according to either the SFC or the FC dynamic rules.

Programs of the "Functions" section are sub-programs that can be called by any other program
in the project. A program of the "Function" section can call another program of this section.
Main and child programs of the sequential section must be described with SFC or FC language.
Programs of cyclic sections (begin and end) cannot be described with SFC or FC language. Any

program of any section may own one or more sub-programs. Any program of the sequential
section may own one or more SFC or FC child programs (according to its own programming
language). Sub-programs cannot be described with SFC or FC language.

Programs of the Begin section are typically used to describe preliminary operations on input
devices to build high level filtered variables. Such variables are frequently used by the programs of
the Sequential section. Programs of the End section are typically used to describe security
operations on the variables operated on by the Sequential section, before sending values to
output devices.

B.1.3 Child SFC and FC programs

Any SFC program of the sequential section may control other SFC programs. Such low-level
programs are called child SFC programs. A child SFC program is a parallel program that can
be started, killed, frozen or restarted by its parent program. The parent program and child program
must both be described with the SFC language. A child SFC program may have local variables
and defined words.

When a parent program starts a child SFC program, it puts an SFC token (activates) into each
initial step of the child program. This command is described with the GSTART statement. When a
parent program kills a child SFC program, it clears all the tokens existing in the steps of the child.
Such a command is described with the GKILL statement.

When a parent program freezes a child SFC program, it suspends its execution. The suspended
program can then be restarted using the GRST statement.

Any FC program of the sequential section may control other FC sub-programs. An FC father
program is blocked (waits) during execution of an FC sub-program. It is not possible that
simultaneous operations are done in father FC program and one of its FC sub-programs.

B.1.4 Functions and sub-programs

A sub-program or a function execution is driven by its parent program. The execution of the parent
program is suspended until the sub-program or the function ends:

main sub-programs

Any program of any section may have one or more sub-programs. A sub-program is owned by
only one father program. A sub-program may have local variables and defines. Any language but
SFC or FC can be used to describe a sub-program. Programs of the "Functions" section are
sub-programs that can be called by any other program in the project. Unlike other sub-programs,
they are not dedicated to one father program. A program of the "Function" section can call
another program of this section. A function can be located in the Library.

Warning: The ISaGRAF system does not support recursive function calls. A run time error will
occur if a program of the "Functions" section is called by itself or by one of its called sub-
program.
Warning: A function or sub-program does not "store" the local value of its local variables. A
function or sub-program is not instantiated and so can not call function blocks.

The interface of a sub-program must be explicitly defined, with a type and a unique name for
each of its calling or return parameter. In order to support the ST language convention, the return
parameter must have the same name as the sub-program.

The following table shows how to set the value of the return parameter in the body of a sub-
program, in the different languages:

ST: assign the return parameter using its name
(the same name as the sub-program):

 subprog_name := <expression>;

IL: the value of the current result (IL register)
at the end of the sequence is stored in the return parameter:

 LD 10
 ADD 20 (* return parameter value = 30 *)

FBD: set the return parameter using its name:

&
>=1

subprog_name

LD: use a coil symbol with the name of the return parameter:

subprog_name

B.1.5 Function blocks

Function blocks can use the languages: LD, FBD, ST or IL. Function blocks are instantiated. It
means local variables of a function block are copied for each instance. When calling a block in a
program, you actually call the instance of the block: the same code is called but the data used are
the one which have been allocated for the instance. Values of the variables of the instance are
stored from one cycle to the other.

(* ST programming *)

(* FB1 is a declared instance
of the SAMPLE function block *)

FB1(high, value, low, 1.0);
high_alarm := FB1.QH;
low_alarm := FB1.QL;
any_alarm := FB1.Q;

Function Block
implementation

Code INSTANCE
DATA

Warnings:
- A function block written with one of the IEC languages can not call other function blocks: the
instantiation mechanism only manages the local variables of the block itself. Here is the list of
standard function blocks that you cannot use inside an IEC function block:
SR, RS, R_Trig, F_Trig, SEMA, CTU, CTD, CTUD, TON, TOF, TP, CMP, StackInt, AVERAGE,
HYSTER, LIM_ALRM, INTEGRAL, DERIVATE, BLINK, SIG_GEN

- For the same reason, you can not use Positive or Negative contact or coils, or Set and Reset
coils.

- TSTART and TSTOP functions to start and stop timers cannot be used in a function block for
3.0x targets. It works since the 3.20 target.

- When you need loop in your function block, you must use local variable before doing the loop.
See the example below:

This will not work: This is OK:

>=

>=1

&

>=

>=1
& IntResult

B.1.6 Description language

A program can be described with any of the following graphic or literal languages:

Sequential Function Chart (SFC) for high level operations
Flow Chart (FC) for high level operations
Function Block Diagram (FBD) for cyclic complex operations
Ladder Diagram (LD) for boolean operations only
Structured Text (ST) for any cyclic operations
Instruction List (IL) for low level operations

The same program cannot mix several languages. The language used to describe a program is
chosen when the program is created, and cannot be changed later on. The exception is that it is
possible to combine FBD and LD in a single program.

B.1.7 Execution rules

ISaGRAF is a synchronous system. All the operations are triggered by a clock. The basic
duration of the clock is called the cycle timing:

Programmed Used Free
Cycle
timing :

Basic operations processed during a target cycle are:

Scan INPUT variables

ISaGRAF
target cycle

Process ‘Begin’ section programs

Process ‘Sequential’ section programs
according to SFC/FC evolution rules

Process ‘End’ section programs

Update OUTPUT devices

This system makes it possible to:

- guarantee that an input variable keeps the same value within a cycle,
- guarantee that an output device is not updated more than once in a cycle,
- work safely on the same global variable from different programs,
- estimate and control the response time of the complete application.

B.2 Common objects

These are main features and common objects of the ISaGRAF programming database. Such
objects can be used in any program written with any of the SFC, FC, FBD, LD, ST or IL
languages.

B.2.1 Basic types

Any constant, expression or variable used in a program (written in any language) must be
characterised by a type. Type coherence must be followed in graphic operations and literal
statements. These are the available basic types for programming objects:

BOOLEAN: logic (true or false) value
ANALOG: integer or real (floating) continuous value
TIMER: time value
MESSAGE: character string

Note: Timers contain values less than one day and cannot be used to store dates.

B.2.2 Constant expressions

Constant expressions are relative to one type. The same notation cannot be used to represent
constant expressions of different types.

B.2.2.1 Boolean constant expressions

There are only two boolean constant expressions:

TRUE is equivalent to the integer value 1
FALSE is equivalent to the integer value 0

"True" and "False" keywords are case insensitive.

B.2.2.2 Integer analog constant expressions

Integer constant expressions represent signed long integer (32 bit) values: from -2147483647 to
+2147483647. Integer analog constants may be expressed with one of the following bases.
Integer constants must begin with a prefix that identifies the bases used:

Base Prefix Example
DECIMAL (none) -908

HEXADECIMAL "16#" 16#1A2B3C4D
OCTAL "8#" 8#1756402
BINARY "2#" 2#1101_0001_0101_1101

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance, and is used to increase constant expression readability.

B.2.2.3 Real analog constant expressions

Real analog constant expressions can be written with either decimal or scientific representation.
The decimal point ('.') separates the integer and decimal parts. The decimal point must be used
to differentiate a real constant expression from an integer one. The scientific representation uses
the 'E' or 'F' letter to separate the mantissa part and the exponent. Exponent part of a real
scientific expression must be a signed integer value from -37 to +37. Below are examples of real
analog constant expressions:

3.14159 -1.0E+12
+1.0 1.0F-15
-789.56 +1.0E-37

The expression "123" does not represent a real constant expression. Its correct real
representation is "123.0".

B.2.2.4 Timer constant expressions

Timer constant expressions represent time values from 0 second to 23h59m59s999ms. The
lowest allowed unit is a millisecond. Standard time units used in constant expressions are:

Hour The "h" letter must follow the number of hours
Minute The "m" letter must follow the number of minutes
Second The "s" letter must follow the number of seconds
Millisecond The "ms" letters must follow the number of milliseconds

The time constant expression must begin with "T#" or "TIME#" prefix. Prefixes and unit letters are
case insensitive. Some units may not appear. These are examples of timer constant expressions:

T#1H450MS 1 hour, 450 milliseconds
time#1H3M 1 hour, 3 minutes

The expression "0" does not represent a time value, but an analog constant.

B.2.2.5 Message string constant expressions

String or message constant expressions represent character strings. Characters must be
preceded by a quote and followed by an apostrophe. For example:

'THIS IS A MESSAGE'

Warning: The apostrophe ''' character cannot be used within a string constant expression. A string
constant expression must be expressed on one line of the program source code. Its length cannot
exceed 255 characters, including spaces.

Empty string constant expression is represented by two apostrophes, with no space or tab
character between them:

'' (* this is an empty string *)

The special character dollar ('$'), followed by other special characters, can be used in a string
constant expression to represent a non-printable character:

Sequence Meaning ASCII
(hexa)

Example

$$ '$' character 16#24 'I paid $$5 for this'
$' apostrophe 16#27 'Enter $'Y$' for YES'
$L line feed 16#0a 'next $L line'
$R carriage return 16#0d ' llo $R He'
$N new line 16#0d0a 'This is a line$N'
$P new page 16#0c 'lastline $P first line'
$T tabulation 16#09 'name$Tsize$Tdate'

$hh (*) any character 16#hh 'ABCD = $41$42$43$44'

(*) "hh" is the hexadecimal value of the ASCII code for the expressed character.

B.2.3 Variables

Variables can be LOCAL to one program, or GLOBAL. Local variables can be used by one
program only. Global variables can be used in any program of the project. Variable names must
conform to the following rules:

name cannot exceed 16 characters
first character must be a letter
following characters can be letters, digits or the underscore character

B.2.3.1 Reserved keywords

A list of the reserved keywords is shown below. Such identifiers cannot be used to name a
program, a variable or a "C" function or function block:

A ANA, ABS, ACOS, ADD, ANA, AND, AND_MASK, ANDN, ARRAY, ASIN, AT,
ATAN,

B BCD_TO_BOOL, BCD_TO_INT, BCD_TO_REAL, BCD_TO_STRING,
BCD_TO_TIME, BOO, BOOL, BOOL_TO_BCD, BOOL_TO_INT,
BOOL_TO_REAL, BOOL_TO_STRING, BOOL_TO_TIME, BY, BYTE,

C CAL, CALC, CALCN, CALN, CALNC, CASE, CONCAT, CONSTANT, COS,
D DATE, DATE_AND_TIME, DELETE, DINT, DIV, DO, DT, DWORD,
E ELSE, ELSIF, EN, END_CASE, END_FOR, END_FUNCTION, END_IF,

END_PROGRAM, END_REPEAT, END_RESSOURCE, END_STRUCT,
END_TYPE, END_VAR, END_WHILE, ENO, EQ, EXIT, EXP, EXPT,

F FALSE, FEDGE, FIND, FOR, FUNCTION,
G GE, GFREEZE, GKILL, GRST, GSTART, GSTATUS, GT,

I IF, INSERT, INT, INT_TO_BCD, INT_TO_BOOL, INT_TO_REAL,
INT_TO_STRING, INT_TO_TIME,

J JMP, JMPC, JMPCN, JMPN, JMPNC,
L LD, LDN, LE, LEFT, LEN, LIMIT, LINT, LN, LOG, LREAL, LT, LWORD,
M MAX, MID, MIN, MOD, MOVE, MSG, MUL, MUX,
N NE, NOT,
O OF, ON, OPERATE, OR, OR_MASK, ORN,
P PROGRAM
R R, REDGE, READ_ONLY, READ_WRITE, REAL, REAL_TO_BCD,

REAL_TO_BOOL, REAL_TO_INT, REAL_TO_STRING, REAL_TO_TIME,
REDGE, REPEAT, REPLACE, RESSOURCE, RET, RETAIN, RETC, RETCN,
RETN, RETNC, RETURN, RIGHT, ROL, ROR,

S S, SEL, SHL, SHR, SIN, SINT, SQRT, ST, STN, STRING, STRING_TO_BCD,
STRING_TO_BOOL, STRING_TO_INT, STRING_TO_REAL,
STRING_TO_TIME, STRUCT, SUB, SYS_ERR_READ, SYS_ERR_TEST,
SYS_INITALL, SYS_INITANA, SYS_INITBOO, SYS_INITTMR,
SYS_RESTALL, SYS_RESTANA, SYS_RESTBOO, SYS_RESTTMR,
SYS_SAVALL, SYS_SAVANA, SYS_SAVBOO, SYS_SAVTMR,
SYS_TALLOWED, SYS_TCURRENT, SYS_TMAXIMUM, SYS_TOVERFLOW,
SYS_TRESET, SYS_TWRITE, SYSTEM,

T TAN, TASK, THEN, TIME, TIME_OF_DAY, TIME_TO_BCD, TIME_TO_BOOL,
TIME_TO_INT, TIME_TO_REAL, TIME_TO_STRING, TMR, TO, TOD, TRUE,
TSTART, TSTOP, TYPE,

U UDINT, UINT, ULINT, UNTIL, USINT,
V VAR, VAR_ACCESS, VAR_EXTERNAL, VAR_GLOBAL, VAR_IN_OUT,

VAR_INPUT, ,VAR_OUTPUT,
W WHILE, WITH, WORD,
X XOR, XOR_MASK, XORN

All keywords beginning with an underscore ('_') character are internal keywords and must not be
used in textual instructions.

B.2.3.2 Directly represented variables

ISaGRAF enables the use of directly represented variables in the source of the programs to
represent a free channel. Free channels are the ones which are not linked to a declared I/O
variable. The identifier of a directly represented variable always begins with "%" character.

Below are the naming conventions of a directly represented variable for a channel of a single
board. "s" is the slot number of the board. "c" is the number of the channel.

%IXs.c free channel of a boolean input board
%IDs.c free channel of an integer input board
%ISs.c free channel of a message input board
%QXs.c free channel of a boolean output board
%QDs.c free channel of an integer output board
%QSs.c free channel of a message output board

Below are the naming conventions of a directly represented variable for a channel of a complex
equipment. "s" is the slot number of the equipment. "b" is the index of the single board within the
complex equipment. "c" is the number of the channel.

%IXs.b.c free channel of a boolean input board
%IDs.b.c free channel of an integer input board
%ISs.b.c free channel of a message input board
%QXs.b.c free channel of a boolean output board
%QDs.b.c free channel of an integer output board
%QSs.b.c free channel of a message output board

Below are examples:

%QX1.6 6th channel of the board #1 (boolean output)
%ID2.1.7 7th channel of the board #1 in the equipment #2 (integer input)

A directly represented variable cannot have the "real" data type.

B.2.3.3 Boolean variables

Boolean means logic. Such variables can take one of the boolean values: TRUE or FALSE.
Boolean variables are typically used in boolean expressions. Boolean variables can have one of the
following attributes:

Internal: memory variable updated by the program
Constant: read-only memory variable with an initial value
Input: variable connected to an input device (refreshed by the system)
Output: variable connected to an output device

Warning: When declaring a boolean variable, strings can be defined to replace 'true' and 'false'
values during debug. Those strings cannot be used in the programs unless entered as 'defined
words' for the language.

B.2.3.4 Analog variables

Analog means continuous. Such variables have signed integer or real (floating) values. Available
formats for an analog variable are:

Integer 32 bit signed integer: from -2147483647 to +2147483647
Real standard IEEE 32 bit floating value (single precision)

1 sign bit + 23 mantissa bits + 8 exponent bits

REAL analog exponent value cannot be less than -37 or greater than +37. Analog variables can
have one of the following attributes:

Internal memory variable updated by the program
Constant: read-only memory variable with an initial value
Input variable connected to an input device (refreshed by the system)
Output variable connected to an output device

Note: When a real variable is connected to an I/O device, the corresponding I/O driver operates
the equivalent integer value.

Warning: Integer and real analog variables or constant expressions cannot be mixed in the same
analog expression.

B.2.3.5 Timer variables

Timer means clock or counter. Such variables have time values and are typically used in time
expressions. A timer value cannot exceed 23h59m59s999ms and cannot be negative. Timer
variables are stored in 32 bit words. The internal representation is a positive number of
milliseconds.
Timer variables can have one of the following attributes:

Internal memory variable managed by the program, refreshed by ISaGRAF system
Constant: read-only memory variable with an initial value

Warning: Timer variables cannot have the INPUT or OUTPUT attributes.

Timer variables can be automatically refreshed by the ISaGRAF system. When a timer is active,
its value is automatically increased according to the target system real time clock. The following
statements of the ST language can be used to control a timer:

TSTART starts automatic refresh of a timer
TSTOP stops automatic refresh of a timer

B.2.3.6 Message string variables

Message or string variables contain character strings. The length of the string can change during
process operations. The length of a message variable cannot exceed the capacity (maximum
length) specified when the variable is declared. Message capacity is limited to 255 characters.
Message variables can have one of the following attributes:

Internal memory variable updated by the program
Constant: read-only memory variable with an initial value
Input variable connected to an input device (refreshed by the system)
Output variable connected to an output device

String variables can contain any character of the standard ASCII table (ASCII code from 0 to 255).
The null character can exist in a character string. Some "C" functions of the standard ISaGRAF
library will not correctly operate messages which contain null (0) characters.

B.2.4 Comments

Comments may be freely inserted in literal languages such as ST and IL. A comment must begin
with the special characters "(*" and terminate with the characters "*)". Comments can be inserted
anywhere in a ST program, and can be written on more than one line.

These are examples of comments:

counter := ivalue; (* assigns the main counter *)
(* this is a comment expressed
on two lines *)
c := counter (* you can put comments anywhere *) + base_value + 1;

Interleave comments cannot be used. This means that the "(*" characters cannot be used within a
comment.

Warning: The IL language only accepts comments as the last component of an instruction line.

B.2.5 Defined words

The ISaGRAF system allows the re-definition of constant expressions, true and false boolean
expressions, keywords or complex ST expressions. To achieve this, an identifier name has to be
given to the corresponding expression. For example:

YES is TRUE
PI is 3.14159
OK is (auto_mode AND NOT (alarm))

When such equivalence is defined, its identifier can be used anywhere in an ST program to
replace the attached expression. This is an example of ST programming using defines:

If OK Then
 angle := PI / 2.0;
 isdone := YES;
End_if;

Defined words can be LOCAL to one program, GLOBAL, or COMMON.
Local defined words can be used by only one program.
Global defined words can be used in any program of the project.
Common defined words can be used in any program of any project.
Note that common defined can be stored separately with the Archive manager.

Warning: When the same identifier is defined twice with different ST equivalencies, the last
defined expression is used. For example:

Define: OPEN is FALSE
OPEN is TRUE

means: OPEN is TRUE

Naming defined words must conform to following rules:
- name cannot exceed 16 characters
- first character must be a letter
- following characters can be letters, digits or underscore ('_') character

Warning: A defined word can not use a defined word in its definition, for example, you can not
have:

PI is 3.14159
PI2 is PI*2

write the complete equivalence using constants or variables and operations:
PI2 is 6.28318

B.3 SFC language

Sequential Function Chart (SFC) is a graphic language used to describe sequential operations.
The process is represented as a set of well-defined steps, linked by transitions. A boolean
condition is attached to each transition. Actions within the steps are detailed by using other
languages (ST, IL, LD and FDB).

B.3.1 SFC chart main format

An SFC program is a graphic set of steps and transitions, linked together by oriented links.
Multiple connection links are used to represent divergences and convergences. Some parts of the
complete program may be separated and represented in the main chart by a single symbol, called
macro steps. The basic graphic rules of the SFC are:
- A step cannot be followed by another step
- A transition cannot be followed by another transition

B.3.2 SFC basic components

The basic components (graphic symbols) of the SFC language are: steps and initial steps,
transitions, oriented links, and jumps to a step.

B.3.2.1 Steps and initial steps

A step is represented by a single square. Each step is referenced by a number, written in the
step square symbol. A main description of the step is written in a rectangle linked to the step
symbol. This description is a free comment (not part of the programming language). The above
information is called the Level 1 of the step:

102 Start motor 1

Reference number

Comment

At run time, a token indicates that the step is active:

Active step: Inactive step:

102 Start motor 1 214 Weighing

The initial situation of an SFC program is expressed with initial steps. An initial step has a
double-bordered graphic symbol. A token is automatically placed in each initial step when the
program is started.

Initial step:

Start motor 11

An SFC program must contain at least one initial step.

These are the attributes of a step. Such fields may be used in any of the other languages:
GSnnn.x activity of the step (boolean value)
GSnnn.t activation duration of the step (time value)
(where nnn is the reference number of the step)

B.3.2.2 Transitions

Transitions are represented by a small horizontal bar that crosses the connection link. Each
transition is referenced by a number, written next to the transition symbol. A main description of
the transition is written on the right side of the transition symbol. This description is a free
comment (not part of the programming language). The above information is called the Level 1 of
the transition:

Weighing command

Reference number

Comment

102

B.3.2.3 Oriented links

Single lines are used to link steps and transitions. These are oriented links. When the orientation
is not explicitly given, the link is oriented from the top to the bottom.

100

Explicit orientation
from transition 11

to setp 100
Implicit orientation
from step 100 to
transition 10

101
10

11

B.3.2.4 Jump to a step

Jump symbols may be used to indicate a connection link from a transition to a step, without having
to draw the connection line. The jump symbol must be referenced with the number of the
destination step:

Jump to step 102

102

A jump symbol cannot be used to represent a link from a step to a transition. Example of jumps -
the following charts are equivalent:

1

2

30 31

1

1

2

30 31

1

B.3.3 Divergences and convergences

Divergences are multiple connection links from one SFC symbol (step or transition) to many
other SFC symbols. Convergences are multiple connection links from more than one SFC
symbols to one other symbol. Divergences and convergences can be single or double.

B.3.3.1 single divergences

A single divergence is a multiple link from one step to many transitions. It allows the active token to
pass into one of a number of branches. A single convergence is a multiple link from many
transitions to the same step. A single convergence is generally used to group the SFC branches
which were started on a single divergence. Single divergences and convergences are represented
by single horizontal lines.

Single divergence

Single convergence

Warning: The conditions attached to the different transitions at the beginning of a single
divergence are not implicitly exclusive. The exclusivity has to be explicitly detailed in the
conditions of the transitions to ensure that only one token progresses in one branch of the
divergence at run time. Below is an example of single divergence and convergence:

(* SFC program with single divergence and convergence *)

1 Initialize

1
Run & not Error

101
Error

2 Start Motor M1 101 Alarm

2
M1 started

102
Acknowledge

3 Start timer

3
timer > t#3s

4 Stop motor M1

4
M1 stopped

1

B.3.3.2 Double divergences

A double divergence is a multiple link from one transition to many steps. It corresponds to parallel
operations of the process. A double convergence is a multiple link from many steps to the same
transition. A double convergence is generally used to group the SFC branches started on a double
divergence. Double divergences and convergences are represented by double horizontal lines.

Double divergence

Double convergence

Example of double divergence and convergence:

(* SFC program with double divergence and convergence *)

1 Initialize

1
Run

2 Process1 101 Process2

2
End of Process 1

101
End of Process 2

3 Wait for process 2 102 Wait for process 2

3
true

1

B.3.4 Macro steps

A macro step is a unique representation of a unique group of steps and transitions. The body of
the macro step is described separately, elsewhere in the same SFC program. It appears as a
single symbol in the main SFC chart. This is the symbol used for a macro step:

102 Process A

Reference number

Comment

The reference number written in the macro step symbol is the reference number of the first step in
the body of the macro step. The macro step body must begin with a beginning step and
terminate with an ending step. The chart must be self-contained. A beginning step has no upper
link (no backward transition). An ending step has no lower link (no forward transition). A macro
step symbol may be put in the body of another macro step.

Warning: Because macro step is a unique set of steps and transitions, the same macro step
cannot be used more than once in an SFC program.

Example of macro step:
(* SFC program with macro step *)
(* Main chart *) (* Body of the macro step *)

1 Initialize 201 Fill WUnit

201
unit full

1
Error

101
Run & not Error 202 Weigh

2 Alarm 201 Weighing
202

weighing done

2
Ack

102
true 203 Empty WUnit

203
unit empty

1
204 Store weight

B.3.5 Actions within the steps

The level 2 of an SFC step is the detailed description of the actions executed during the step
activity. This description is made by using SFC literal features, and other languages such as
Structured Text (ST). The basic types of actions are:
- Boolean actions
- Pulse actions programmed in ST
- Non-stored actions programmed in ST
- SFC actions

Several actions (with same or different types) can be described in the same step. The special
features that enable the use of any of the other languages are:
- Calling sub-programs
- Instruction List (IL) language convention

B.3.5.1 Boolean actions

Boolean actions assign a boolean variable with the activity of the step. The boolean variable can be
an output or an internal. It is assigned each time the step activity starts or stops. This is the syntax
of the basic boolean actions:

<boolean_variable> (N) ; assigns the step activity signal to the variable
<boolean_variable> ; same effect (N attribute is optional)

/ <boolean_variable> ; assigns the negation of the step activity signal to the
variable

Other features are available to set or reset a boolean variable, when the step becomes active. This
is the syntax of set and reset boolean actions:

<boolean_variable> (S) ; sets the variable to TRUE when the step activity
signal becomes TRUE

<boolean_variable> (R) ; resets the variable to FALSE when the step activity
signal becomes TRUE

The boolean variable must be an OUTPUT or an INTERNAL. The following SFC programming
leads to the following behaviour:

Boolean actions

Bdirect(N) ;
/Binvert ;
Bset(S) ;
Breset(R) ;

10
GS10.X

(step activity)

Bdirect

Binvert

Bset

Breset

Example of boolean actions:

(* SFC program using BOOLEAN actions *)

1 led1(R); led4(S); group12(R);

1
2 led1 (N); group12 (S);

2
GS2.t > t#1s;

3 led2;

3
GS3.t > t#2s;

4 led3; group12 (R);

4
GS4.t > t#1s;

2

B.3.5.2 Pulse actions

A pulse action is a list of ST or IL instructions, which are executed only once at the activation of
the step. Instructions are written according to the following SFC syntax:

ACTION (P) :

(* ST statements *)
END_ACTION ;

The following shows the results of a pulse action:

Step activity

Execution

Example of pulse action:

1 Action (P):
 nb_edge := 0;
End_action;

4
Cmd;

5 Action (P);
 nb_edge := nb_edge + 1;
End_action;

B.3.5.3 Non-stored actions

A non-stored (normal) action is a list of ST or IL instructions which are executed at each cycle
during the whole active period of the step. Instructions are written according to the following SFC
syntax:

ACTION (N) :
(* ST statements *)

END_ACTION ;

The following is the results of a non-stored action:

Step activity

Execution

Example of non-stored action:

1 Action (P):
 nb_edge := 0;
End_action;

4
Cmd;

5 Action (N):
 If (nb_egde < 10) then
 nb_edge := nb_edge + 1;
 End_if;
End_action;

B.3.5.4 SFC actions

An SFC action is a child SFC sequence, started or killed according to the change of the step
activity signal. An SFC action can have the N (Non stored), S (Set), or R (Reset) qualifier. This is
the syntax of the basic SFC actions:

<child_prog> (N); starts the child sequence when the step becomes active, and kills
the child sequence when the step becomes inactive

<child_prog> ; same effect (N attribute is optional)
<child_prog> (S); starts the child sequence when the step becomes active. Nothing

is done when the step becomes inactive
<child_prog> (R); kills the child sequence when the step becomes active. Nothing is

done when the step becomes inactive

The SFC sequence specified as an action must be a child SFC program of the program
currently being edited. Note that using the S (Set) or R (Reset) qualifiers for an SFC action has
exactly the same effect as the GSTART and GKILL statements, programmed in an ST pulse
action.
Below is an example of an SFC action. The main SFC program is named Father. It has two SFC
children, called SeqMlx and SeqPump. The SFC programming of the father SFC program is:

(* SFC program using SFC actions *)

1

1
Start;

2 SeqMlx (N); 101 SeqPump (S);

101
Full;

102 SeqPump (R);

2

1

B.3.5.5 Calling function and function blocks from an action

Sub-programs, functions or function blocks (written in ST, IL, LD or FBD language) or "C"
functions and "C" function blocks, can be directly called from an SFC action block, based on the
following syntax:

For sub-programs, functions and "C" functions:
ACTION (P) :

result := sub_program () ;
END_ACTION;

or

ACTION (N) :
result := sub_program () ;

END_ACTION;

For function blocks in "C" or in ST, IL, LD, FBD:
ACTION (P) :

Fbinst(in1, in2);
result1 := Fbinst.out1;
result2 := Fbinst.out2;

END_ACTION;

or

ACTION (N) :
Fbinst(in1, in2);
result1 := Fbinst.out1;
result2 := Fbinst.out2;

END_ACTION;

Detailed syntax can be found in the ST language section.
Example of a sub-program call in action blocks:

(* SFC program with a sub-program call in an action block *)

1 Action (P):
 init := SPInit ();
End_action;

Init = OK;

B.3.5.6 IL convention

Instruction List (IL) programming may be directly entered in an SFC action block, based on the
following syntax:

ACTION (P) : (* or N *)
#info=IL

 <instruction>
 <instruction>

#endinfo
END_ACTION;

The special "#info=IL" and "#endinfo" keywords must be entered exactly this way, and are case
sensitive. Space or tab characters cannot be inserted into, after or before the keywords. Below is
an example of an IL program in an action block:

(* SFC program with an IL sequence in an action block *)

1 Action (P):
#info=IL
 LD False
 ST Led1
 ST Led2
#endinfo
End_action;

B.3.6 Conditions attached to transitions

At each transition, a boolean expression is attached that conditions the clearing of the transition.
The condition is usually expressed with ST language or using the LD language (Quick LD editor).
This is the Level 2 of the transition. Other structures may, however, be used:

- ST language convention
- LD language convention
- IL language convention
- Calling function from a transition

Warning: When no expression is attached to the transition, the default condition is TRUE.

B.3.6.1 ST convention

The Structured Text (ST) language can be used to describe the condition attached to a
transition. The complete expression must have boolean type and must be terminated by a
semicolon, according to the following syntax:

< boolean_expression > ;

The expression may be a TRUE or FALSE constant expression, a single input or an internal
boolean variable, or a combination of variables that leads to a boolean value. Below is an example
of ST programming for transitions:

(* SFC program with ST programming for transitions *)

1

Run & not Error;

B.3.6.2 LD convention

The Ladder Diagram (LD) language can be used to describe the condition attached to a
transition. The diagram is composed of only one rung with one coil. The coil value represents the
transition value. Below is an example of LD programming for transitions:

1 Run Error

B.3.6.3 IL convention

Instruction List (IL) programming may be directly used to describe an SFC transition, according to
the following syntax:

#info=IL
<instruction>
<instruction>
....

#endinfo
The value contained by the current result (IL register) at the end of the IL sequence causes the
resulting of the condition to be attached to the transition:

current result = 0 è condition is FALSE
current result <> 0 è condition is TRUE

The special "#info=IL" and "#endinfo" keywords must be entered exactly this way, and are case
sensitive. Space or tab characters cannot be inserted into, after or before the keywords. Below is
an example of IL programming for transitions:

(* SFC program with an IL program for transitions *)

1

#info=IL
 LD Run
 &N Error
#endinfo

B.3.6.4 Calling functions from a transition

Any sub-program or a function (written in FBD, LD, ST or IL language), or a "C" function can be
called to evaluate the condition attached to a transition, according to the following syntax:

< sub_program > () ;

The value returned by the sub-program or the function must be boolean and yields the resulting
condition:

return value = FALSE è condition is FALSE
return value = TRUE è condition is TRUE

Example of a sub-program called in a transition:

(* SFC program with sub-program call for transitions *)

1

EvalCond ();

B.3.7 SFC dynamic rules

The five dynamic rules of the SFC language are:

 Initial situation
The initial situation is characterised by the initial steps which are, by definition, in the
active state at the beginning of the operation. At least one initial step must be present
in each SFC program.

 Clearing of a transition
A transition is either enabled or disabled. It is said to be enabled when all immediately
preceding steps linked to its corresponding transition symbol are active, otherwise it is
disabled. A transition cannot be cleared unless:
 - it is enabled, and
 - the associated transition condition is true.

 Changing of state of active steps
The clearing of a transition simultaneously leads to the active state of the immediately
following steps and to the inactive state of the immediately preceding steps.

 Simultaneous clearing of transitions
Double lines may be used to indicate transitions which have to be cleared
simultaneously. If such transitions are shown separately, the activity state of preceding
steps (GSnnn.x) can be used to express their conditions.

 Simultaneous activation and deactivation of a step
If, during operation, a step is simultaneously activated and deactivated, priority is given
to the activation.

B.3.8 SFC program hierarchy

The ISaGRAF system enables the description of the vertical structure of SFC programs. SFC
programs are organised in a hierarchy tree. Each SFC program can control (start, kill...) other

SFC programs. Such programs are called children of the SFC program which controls them.
SFC programs are linked together into a main hierarchy tree, using a "father - child" relation:

FATHER program

CHILD program

The basic rules implied by the hierarchy structure are:
- SFC programs which have no father are called "main" SFC programs
- Main SFC programs are activated by the system when the application starts
- A program can have several child programs
- A child of a program cannot have more than one father
- A child program can only be controlled by its father
- A program cannot control the children of one of its own children

The basic actions that a father SFC program can take to control its child program are:

Start (GSTART) Starts the child program: activates each of its initial steps.
Children of this child program are not automatically started.

Kill (GKILL) Kills the child program by deactivating each of its active steps. All
the children of the child program are also killed.

Freeze (GFREEZE) Suspends the execution of the program (deactivates actions of
each of the active steps and suspend transition calculation), and memorises
the status of the program steps so the program can be restarted. All the
children of the child program are also frozen.

Restart (GRST) Restarts a frozen SFC program by reactivating all the suspended
steps. Children of the program are not automatically restarted.

Get status (GSTATUS) Gets the current status (active, inactive or frozen) of a child
program.

B.4 Flow Chart language

Flow Chart (FC) is a graphic language used to describe sequential operations. A Flow Chart
diagram is composed of Actions and Tests. Between Actions and test are oriented links
representing data flow. Multiple connection links are used to represents divergences and
convergences. Actions and Tests can be described with ST, LD or IL languages. Functions and
Function blocks of any language (except SFC) can be called from actions and tests. A Flow Chart
program can call another Flow Chart program. The called FC program is a sub-program of the
calling FC program.

B.4.1 FC components

Below are graphic components of the Flow Chart language:

Beginning of FC chart
A "begin" symbol must appear at the beginning of a Flow Chart program. It is unique and cannot
be omitted. It represents the initial state of the chart when it is activated. Below is the drawing of a
"begin" symbol:

Begin

The "Begin" symbol always has a connection (on the bottom) to the other objects of the chart. A
flow chart is not valid if no connection is drawn from "Begin" to another object.

Ending of FC chart
An "end" symbol must appear at the end of a Flow Chart program. It is unique and cannot be
omitted. It is possible that no connection is drawn to the "End" symbol (always looping chart), but
"End" symbol is still drawn anyway at the bottom of the chart. It represents the final state of the
chart, when its execution has been completed. Below is the drawing of an "end" symbol:

End

The "End" symbol generally has a connection (on the top) to the other objects of the chart. A flow
chart may have no connection to the "End" object (always looping chart). The "End" object is still
visible at the bottom of the chart in this case.

FC flow links
A flow link is a line that represents a flow between two points of the diagram. A link is always
terminated by an arrow. Below is the drawing of a flow link:

Two links cannot start from the same source connection point.

FC actions
An action symbol represents actions to be performed. An action is identified by a number and a
name. Below is the drawing of an "action" symbol:

nn: Name

Two different objects of the same chart cannot have the same name or logical number.
Programming language for an action can be ST, LD or IL. An action is always connected with
links, one arriving to it, one starting from it.

FC conditions
A condition represents a boolean test. A condition is identified by a number and a name.
According to the evaluation of attached ST, LD or IL expression, the flow is directed to "YES" or
"NO" path. Below are the possible drawings for a condition symbol:

nn: Name NO

YES

nn: NameNO

YES

nn: Name YES

NO

nn: NameYES

NO

Two different objects of the same chart cannot have the same name or logical number. The
programming of a test is either
- an expression in ST, or
- a single rung in LD, with no symbol attached to the unique coil, or
- several instructions in IL. The IL register (or current result) is used to evaluate the condition.

When programmed in ST text, the expression may optionally be followed by a semicolon. When
programmed in LD, the unique coil represents the condition value. A condition equal to:
- 0 or FALSE directs the flow to NO
- 1 or TRUE directs the flow to YES

A test is always connected with an arriving link, and both forward connections must be defined.

FC sub-program
The system enables the description of the vertical structure of FC programs. FC programs are
organised in a hierarchy tree. Each FC program can call other FC programs. Such a program is
called a child program of the FC program which calls them. FC programs which call FC sub-

programs are called father program. FC programs are linked together into a main hierarchy tree,
using a "father - child" relation:

FATHER program

CHILD program

A sub-program symbol in a Flow Chart represents a call to a Flow Chart sub-program. Execution
of the calling FC program is suspended till the sub-program execution is complete. A Flow Chart
sub-program is identified by a number and a name, as other programs, functions or function
blocks. Below is the drawing of a "sub-program call" symbol:

nn: SpName

Two different objects of the same chart cannot have the same logical number. The basic rules
implied by the FC hierarchy structure are:
- FC programs which have no father are called main FC programs.
- Main FC programs are activated by the system when the application starts
- A program can have several child programs
- A child of a program cannot have more than one father
- A child program can be called only by its father
- A program cannot call the children of one of its own children

The same sub-program may appear several times in the father chart. A Flow Chart sub-program
call represents the complete execution of the sub chart. The father chart execution is suspended
during the child chart is performed. The sub-program calling blocks must follow the same
connection rules as the ones defined for action.

FC I/O specific action
An I/O specific action symbol represents actions to be performed. As other actions, an I/O
specific action is identified by a number and a name. The same semantic is used on standard
actions and I/O specific actions. The aim of I/O specific actions is only to make the chart more
readable and to give focus on non-portable parts of the chart. Using I/O specific actions is an
optional feature. Below is the drawing of an "I/O specific action" symbol:

nn: Name

I/O specific blocks have exactly the same behaviour as standard actions. This covers their
properties, ST, LD or IL programming, and connection rules.

FC connectors
Connectors are used to represent a link between two points of the diagram without drawing it. A
connector is represented as a circle and is connected to the source of the flow. The drawing of the
connector is completed, on the appropriate side (depending on the direction of the data flow), by
the identification of the target point (generally the name of the target symbol). Below is the
standard drawing of a connector:

 nn: Name

A connector always targets a defined Flow Chart symbol. The destination symbol is identified by
its logical number.

FC comments
A comment block contains text that has no sense for the semantic of the chart. It can be inserted
anywhere on an unused space of the Flow Chart document window, and is used to document the
program. Below is the drawing of a "comment" symbol:

comment text can
be on several lines...

B.4.2 FC complex structures

This section shows complex structure examples that can be defined in a Flow Chart diagram.
Such structures are combinations of basic objects linked together.

IF / THEN / ELSE

(1) place for "THEN" actions to be inserted
(2) place for "ELSE" actions to be inserted

REPEAT / UNTIL

(3) place for repeated actions to be inserted

WHILE / DO

(3) place for repeated actions to be inserted

B.4.3 FC dynamic behaviour

The execution of a Flow Chart diagram can be explained as follows:

- The Begin symbol takes one target cycle
- The End symbol takes one target cycle and ends the execution of the chart. After this symbol is
reached, no more actions of the chart are executed.
- The flow is broken each time an item (action, decision) is encountered that has already been
reached in the same cycle. In such a case the flow will continue on the next cycle.

Note: Contrary to SFC, an action is not a stable state. There is no repetition of instructions while
the action symbol is highlighted.

B.4.4 FC checking

Apart of attached ST, LD or IL programming, some other syntactic rules apply to flow chart itself.
Below is the list of main rules:
- All "connection" points of all symbols must be wired. (connection to "End" symbol may be
omitted)
- All symbols must be linked together (no isolated part should appear)
- All connectors should have valid destination

Other minor syntax errors can be reported:
- Empty actions (no programming) are considered as steps during run time scheduling
- Empty tests (no programming) are considered as "always true"

B.5 FBD language

The Functional Block Diagram (FBD) is a graphic language. It allows the programmer to build
complex procedures by taking existing functions from the ISaGRAF library and wiring them
together in the graphic diagram area.

B.5.1 FBD diagram main format

FBD diagram describes a function between input variables and output variables. A function is
described as a set of elementary function blocks. Input and output variables are connected to
blocks by connection lines. An output of a function block may also be connected to an input of
another block.

{ }
Function

Inputs Outputs

An entire function operated by an FBD program is built with standard elementary function blocks
from the ISaGRAF library. Each function block has a fixed number of input connection points
and a fixed number of output connection points. A function block is represented by a single
rectangle. The inputs are connected on its left border. The outputs are connected on its right
border. An elementary function block performs a single function between its inputs and its
outputs. The name of the function to be performed by the block is written in its rectangle symbol.
Each input or output of a block has a well-defined type.

{ }Inputs Outputs&

Name of the function

Input variables of an FBD program must be connected to input connection points of function
blocks. The type of each variable must be the same as the type expected for the associated input.
An input for FBD diagram can be a constant expression, any internal or input variable, or an
output variable.

Output variables of an FBD program must be connected to output connection points of function
blocks. The type of each variable must be the same as the type expected for the associated block
output. An Output for FBD diagram can be any internal or output variable, or the name of the
program (for sub-programs only). When an output is the name of the currently edited sub-
program, it represents the assignment of the return value for the sub-program (returned to the
calling program).

Input and output variables, inputs and outputs of the function blocks are wired together with
connection lines. Single lines may be used to connect two logical points of the diagram:

- An input variable and an input of a function block
- An output of a function block and an input of another block
- An output of a function block and an output variable

The connection is oriented, meaning that the line carries associated data from the left extremity to
the right extremity. The left and right extremities of the connection line must be of the same type.

Multiple right connection can be used to broadcast an information from its left extremity to each of
its right extremities. All the extremities of the connection must be of the same type.

B.5.2 RETURN statement

The "<RETURN>" keyword may occur as a diagram output. It must be connected to a boolean
output connection point of a function block. The RETURN statement represents a conditional
end of the program: if the output of the box connected to the statement has the boolean value
TRUE, the end (remaining part) of the diagram is not executed.

(* Example of an FBD program using RETURN statement *)

auto_mode
alarm

>=1

RETURN

bi10
bi23

x_cmd

&
>=1

bo67

(* ST equivalence: *)
If auto_mode OR alarm Then

Return;
End_if;
bo67 := (bi10 AND bi23) OR x_cmd;

B.5.3 Jumps and labels

Labels and jumps are used to control the execution of the diagram. No other object may be
connected on the right of a jump or label symbol. The following notations are used:

>>LAB........................... jump to a label (label name is "LAB")
LAB:.............................. definition of a label (label name is "LAB")

If the connection line on the left of the jump symbol has the boolean state TRUE, the execution of
the program directly jumps after the corresponding label symbol.

(* Example of an FBD program using labels and jumps *)

manual
b1

&

NOMODIF

input1
input2 result

NOMODIF:

result
valid cmd10

>=1

>=1

(* IL Equivalence: *)
ld manual
and b1
jmpc NOMODIF
ld input1
or input2
st result

NOMODIF: ld result
or valid
st cmd10

B.5.4 Boolean negation

A single connection line with its right extremity connected to an input of a function block can be
terminated by a boolean negation. The negation is represented by a small circle. When a
boolean negation is used, the left and right extremities of the connection line must have the
BOOLEAN type.

(* Example of an FBD program using a boolean negation *)

input1
input2 output1

&

(* ST equivalence: *)
output1 := input1 AND NOT (input2);

B.5.5 Calling function or function blocks from the FBD

The FBD language enables the calling of sub-programs, functions or function blocks. A sub-
program, or function or function block is represented by a function box. The name written in the
box is the name of the sub-program or function or function blocks.
In case of a sub-program or a function, the return value is the only output of the function box.
A function block can have more than one output.

(* Example of an FBD program using SUB PROGRAM block *)

Weighing
mode

delta net_w

mode
delta

net_weight

=
IN1

IN2 Q0

+

tare_weight weight

RETURN

(* ST Equivalence *)
net_weight := Weighing (mode, delta); (* call sub-program *)
If (net_weight = 0) Then Return; End_if;
weight := net_weight + tare_weight;

B.6 LD language

Ladder Diagram (LD) is a graphic representation of boolean equations, combining contacts (input
arguments) with coils (output results). The LD language enables the description of tests and
modifications of boolean data by placing graphic symbols into the program chart. LD graphic
symbols are organized within the chart exactly as an electric contact diagram. LD diagrams are
connected on the left side and on the right side to vertical power rails. These are basic graphic
components of an LD diagram:

---------------------------Left vertical power rail

---------------------------Right vertical power rail

---------------------------Horizontal connection line

---------------------------Vertical connection line

---------------------------Multiple connection lines (all connected together)

---------------------------Contact associated with a variable

---------------------------Coil associated to an output or to an internal variable

B.6.1 Power rails and connection lines

An LD diagram is limited on the left and right side by vertical lines, named left power rail and
right power rail respectively.

Right power rail
Left power rail

LD diagram graphic symbols are connected to power rails or to other symbols by connection
lines. Connection lines are horizontal or vertical.

Horizontal connection lines

Vertical connection
with OR meaning

Vertical
connection line

Each line segment has a boolean state FALSE or TRUE. The boolean state is the same for all the
segments directly linked together. Any horizontal line connected to the left vertical power rail has
the TRUE state.

B.6.2 Multiple connection

The boolean state given to a single horizontal connection line is the same on the left and on the
right extremities of the line. Combining horizontal and vertical connection lines enables the building
of multiple connections. The boolean state of the extremities of a multiple connection follows
logic rules.

A multiple connection on the left combines more than one horizontal lines connected on the
left side of a vertical line, and one line connected on its right side. The boolean state of the right
extremity is the LOGICAL OR between all the left extremities.

(* Example of multiple LEFT connection *)

v1

v2

v3

(* right extremity state is (v1 OR v2 OR v3) *)

A multiple connection on the right combines one horizontal line connected on the left side of a
vertical line, and more than one line connected on its right side. The boolean state of the left
extremity is propagated into each of the right extremities.

(* Example of multiple RIGHT connection *)
input1 output1

output2

(* ST equivalence: *)
output1 := input1;
output2 := input1;

A multiple connection on the left and on the right combines more than one horizontal line
connected on the left side of a vertical line, and more than one line connected on its right side.
The boolean state of each of the right extremities is the LOGICAL OR between all the left
extremities

(* Example of multiple LEFT and RIGHT connection *)

input1

input2

output1

output2

output3

(* ST Equivalence: *)
output1 := input1 OR input2;
output2 := input1 OR input2;
output3 := input1 OR input2;

B.6.3 Basic LD contacts and coils

There are several symbols available for input contacts:
- Direct contact
- Inverted contact
- Contacts with edge detection

There are several symbols available for output coils:
- Direct coil
- Inverted coil
- SET coil
- RESET coil
- Coils with edge detection

The name of the variable is written above any of these graphic symbols:

Direct contact
A direct contact enables a boolean operation between a connection line state and a boolean
variable.

boo_variable

Left connection Right connection

The state of the connection line on the right of the contact is the LOGICAL AND between the
state of the left connection line and the value of the variable associated with the contact.

(* Example using DIRECT contacts *)

input1 input2 output1

(* ST Equivalence: *)
output1 := input1 AND input2;

Inverted contact
An inverted contact enables a boolean operation between a connection line state and the
boolean negation of a boolean variable.

boo_variable

Left connection Right connection

The state of the connection line on the right of the contact is the LOGICAL AND between the
state of the left connection line and the boolean negation of the value of the variable associated
with the contact.

(* Example using INVERTED contacts *)

input1 input2 output1

(* ST Equivalence: *)
output1 := NOT (input1) AND NOT (input2);

Contact with rising edge detection
This contact (positive) enables a boolean operation between a connection line state and the
rising edge of a boolean variable.

boo_variable

Left connection Right connection
P

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable rises from FALSE to
TRUE. It is reset to FALSE in all other cases.

(* Example using RISING EDGE contacts *)

input1 input2 output1
P

(* ST Equivalence: *)
output1 := input1 AND (input2 AND NOT (input2prev));
(* input2prev is the value of input2 at the previous cycle *)

Contact with falling edge detection
This contact (negative) enables a boolean operation between a connection line state and the
falling edge of a boolean variable.

boo_variable

Left connection Right connection
N

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable falls from TRUE to
FALSE. It is reset to FALSE in all other cases.

(* Example using FALLING EDGE contacts *)

input1 input2 output1
N

(* ST Equivalence: *)
output1 := input1 AND (NOT (input2) AND input2prev);
(* input2prev is the value of input2 at the previous cycle *)

Direct coil
Direct coils enable a boolean output of a connection line boolean state.

boo_variable

Left connection Right connection

The associated variable is assigned with the boolean state of the left connection. The state of
the left connection is propagated into the right connection. The right connection may be connected
to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.
The associated name can be the name of the program (for sub-programs only). This
corresponds to the assignment of the return value of the sub-program.

(* Example using DIRECT coils *)

input1 output1

output2

(* ST Equivalence: *)
output1 := input1;
output2 := input1;

Inverted coil
Inverted coils enable a boolean output according to the boolean negation of a connection line
state.

boo_variable

Left connection Right connection

The associated variable is assigned with the boolean negation of the state of the left
connection. The state of the left connection is propagated into the right connection. Right
connection may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.
The associated name can be the name of the program (for sub-programs only). This
corresponds to the assignment of the return value of the sub-program.

(* Example using INVERTED coils *)

input1 output1

output2

(* ST Equivalence: *)
output1 := NOT (input1);
output2 := input1;

SET coil
"Set" coils enable a boolean output of a connection line boolean state.

boo_variable

Left connection Right connection
S

The associated variable is SET TO TRUE when the boolean state of the left connection
becomes TRUE. The output variable keeps this value until an inverse order is made by a
"RESET" coil. The state of the left connection is propagated into the right connection. Right
connection may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using "SET" and "RESET" coils *)

input1

input2

output1
S

output1
R

(* ST Equivalence: *)
IF input1 THEN
 output1 := TRUE;
END_IF;

IF input2 THEN
 output1 := FALSE;
END_IF;

RESET coil
"Reset" coils enable boolean output of a connection line boolean state.

boo_variable

Left connection Right connection
R

The associated variable is RESET TO FALSE when the boolean state of the left connection
becomes TRUE. The output variable keeps this value until an inverse order is made by a "SET"
coil. The state of the left connection is propagated into the right connection. Right connection may
be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using "SET" and "RESET" coils *)

input1

input2

output1
S

output1
R

(* ST Equivalence: *)
IF input1 THEN
 output1 := TRUE;
END_IF;
IF input2 THEN
 output1 := FALSE;
END_IF;

Coil with rising edge detection
"Positive" coils enable boolean output of a connection line boolean state. This type of coils are
only available using the Quick ladder editor.

boo_variable

Left connection Right connection
P

The associated variable is set to TRUE when the boolean state of the left connection rises from
FALSE to TRUE. The output variable resets to FALSE in all other cases. The state of the left
connection is propagated into the right connection. Right connection may be connected to the right
vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using a "Positive" coil *)

input1 output1
P

(* ST Equivalence: *)
IF (input1 and NOT(input1prev)) THEN
 output1 := TRUE;
ELSE
 output1 := FALSE;
END_IF;
(* input1prev is the value of input1 at the previous cycle *)

Coil with falling edge detection
"Negative" coils enable boolean output of a connection line boolean state. This type of coils are
only available using the Quick ladder editor.

boo_variable

Left connection Right connection
N

The associated variable is set to TRUE when the boolean state of the left connection falls from
TRUE to FALSE. The output variable resets to FALSE in all other cases. The state of the left
connection is propagated into the right connection. Right connection may be connected to the right
vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using a "Positive" coil *)

input1 output1
N

(* ST Equivalence: *)
IF (NOT(input1) and input1prev) THEN
 output1 := TRUE;
ELSE
 output1 := FALSE;
END_IF;
(* input1prev is the value of input1 at the previous cycle *)

B.6.4 RETURN statement

The RETURN label can be used as an output to represent a conditional end of the program. No
connection can be put on the right of a RETURN symbol.

RETURN

If the left connection line has the TRUE boolean state, the program ends without executing the
equations entered on the following lines of the diagram.
Note: When the LD program is a sub-program, its name has to be associated with an output coil
to set the return value (returned to the calling program).

(* Example using RETURN symbol *)

manual_mode
RETURN

input1 input2

input3

result

(* ST Equivalence: *)
If Not (manual_mode) Then RETURN; End_if;
result := (input1 OR input3) AND input2;

B.6.5 Jumps and labels

Labels, conditional and unconditional JUMPS symbols, can be used to control the execution of the
diagram. No connection can be put on the right of the label and jump symbol. The following
notations are used:

>>LAB........................... jump to label named "LAB"
LAB:.............................. definition of the label named "LAB"

If the connection on the left of the jump symbol has the TRUE boolean state, the program
execution is driven after the label symbol.

(* Example using JUMP and LABEL symbols *)

manual_mode

input1 result

OTHER

OTHER:

input2 result

END

END:

(* IL Equivalence: *)
ldn manual_mode
jmpc other

ld input1
st result
jmp END

OTHER: ld input2
st result

END: (* end of program *)

B.6.6 Blocks in LD

Using the Quick LD editor, you connect function boxes to boolean lines. A function can actually be
an operator, a function block or a function. As all blocks do not have always a boolean input and/or
a boolean output, inserting blocks in an LD diagram leads to the addition of new parameters EN,
ENO to the block interface. The EN, ENO parameters are not added if you use the FBD/LD editor
as you can connect the variable with the required type.

The "EN" input
On some operators, functions or function blocks, the first input does not have boolean data type.
As the first input must always be connected to the rung, another input is automatically inserted at
the first position, called "EN". The block is executed only if the EN input is TRUE. Below is the
example of a comparison operator, and the equivalent code expressed in ST:

IF rung_state THEN
 q := (value1 > value 2);
ELSE
 q := FALSE;
END_IF;
(* continue rung with q state *)

The "ENO" output
On some operators, functions or function blocks, the first output does not have boolean data type.
As the first output must always be connected to the rung, another output is automatically inserted
at the first position, called "ENO". The ENO output always takes the same state as the first input
of the block. Below is an example with AVERAGE function block, and the equivalent code
expressed in ST:

AVERAGE(rung_state, Signal, 100);
OutSignal := AVERAGE.XOUT;
eno := rung_state;
(* continue rung with eno state *)

The "EN" and "ENO" parameters
On some cases, both EN and ENO are required. Below is an example with an arithmetic operator,
and the equivalent code expressed in ST:

IF rung_state THEN
 result := (value1 + value2);
END_IF;
eno := rung_state;
(* continue rung with eno state *)

B.7 ST language

ST (Structured Text) is a high level structured language designed for automation processes.
This language is mainly used to implement complex procedures that cannot be easily expressed
with graphic languages. ST is the default language for the description of the actions within the
steps and conditions attached to the transitions of the SFC language.

B.7.1 ST main syntax

An ST program is a list of ST statements. Each statement ends with a semi-colon (";")
separator. Names used in the source code (variable identifiers, constants, language keywords...)
are separated with inactive separators (space character, end of line or tab stops) or by active
separators, which have a well defined significance (for example, the ">" separator indicates a
"greater than" comparison. Comments may be freely inserted into the text. A comment must begin
with "(*" and ends with "*)". Each statement terminates with a semi-colon (";") separator. These
are basic types of ST statements:

- assignment statement (variable := expression;)
- sub-program or function call
- function block call
- selection statements (IF, THEN, ELSE, CASE...)
- iteration statements (FOR, WHILE, REPEAT...)
- control statements (RETURN, EXIT...)
- special statements for links with other languages such as SFC

Inactive separators may be freely entered between active separators, constant expressions and
identifiers. ST inactive separators are: Space (blank) character, Tabs and End of line character.
Unlike line-formatted languages such as IL, end of lines may be entered anywhere in the program.
The rules shown below should be followed when using inactive separators to increase ST program
readability:

- Do not write more than one statement on one line
- Use tabs to indent complex statements
- Insert comments to increase readability of lines or paragraphs

B.7.2 Expression and parentheses

ST expressions combine ST operators and variable or constant operands. For each single
expression (combining operands with one ST operator), the type of the operands must be the
same. This single expression has the same type as its operands, and can be used in a more
complex expression. For example :

(boo_var1 AND boo_var2) has BOO type
not (boo_var1) has BOO type
(sin (3.14) + 0.72) has REAL ANALOG type
(t#1s23 + 1.78) is an invalid expression

Parentheses are used to isolate sub parts of the expression, and to explicitly order the priority of
the operations. When no parentheses are given for a complex expression, the operation sequence
is implicitly given by the default priority between ST operators. For example:

2 + 3 * 6 equals 2+18=20 because multiplication operator has a
higher priority

(2+3) * 6 equals 5*6=30 priority is given by parenthesis

Warning: A maximum number of 8 levels of parentheses can be nested within an expression.

B.7.3 Function or function block calls

Standard ST function calls may be used for each of following objects:
- Sub-programs
- Library functions and function blocks written in IEC languages
- "C" functions and function blocks
- Type conversion functions

Calling sub-programs or functions
Name: name of the called sub-program

or library function written in IEC language or in "C"
Meaning: calls a ST, IL, LD or FBD sub-program or function or a "C" function

and gets its return value
Syntax: <variable> := <subprog> (<par1>, ... <parN>);
Operands: The type of return value and calling parameters must follow

the interface defined for the sub-program.
Return value: value returned by the sub-program

Sub-program calls may be used in any expression. They also may be used in an SFC transition.

Example1: Sub-program call

(* Main ST program *)
(* gets an analog value and converts it into a limited time value *)
ana_timeprog := SPlimit (tprog_cmd);
appl_timer := tmr (ana_timeprog * 100);

(* Called FBD program named 'SPlimit' *)

min_value

Input_value

max_value

min

IN1

IN2 Q

max

IN1

IN2 Q SPlimit

Example2: Function call

(* functions used in complex expressions: min, max, right, mlen and left are standard "C"
functions *)
limited_value := min (16, max (0, input_value));

rol_msg := right (message, mlen (message) - 1) + left (message, 1);

Calling function blocks
Name: name of the function block instance
Meaning: calls a function block from the ISaGRAF library or from the user's library

and accesses its return parameters
Syntax: (* call of the function block *)

<blockname> (<p1>, <p2> ...);
(gets its return parameters *)
<result> := <blockname>. <ret_param1>;
...
<result> := <blockname>. <ret_paramN>;

Operands: parameters are expressions which match the type
of the parameters specified for that function block

Return value: See Syntax to get the return parameters.

Consult the ISaGRAF library to find the meaning and type of each function block parameter. The
function block instance (name of the copy) must be declared in the dictionary

Example :

(* ST program calling a function block *)

(* declare the instance of the block in the dictionary: *)
(* trigb1 : block R_TRIG - rising edge detection *)

(* function block activation from ST language *)
trigb1 (b1);
(* return parameters access *)
If (trigb1.Q) Then nb_edge := nb_edge + 1; End_if;

B.7.4 ST specific boolean operators

The following boolean operators are specific to the ST language:
- REDGE rising edge detection
- FEDGE falling edge detection

Other standard boolean operators such as:
- NOT boolean negation
- AND (&) logical AND
- OR logical OR
- XOR logical exclusive OR
can be used. Their description is to be found in the section 'Standard operators, function blocks
and functions'.

"REDGE" operator
Name: REDGE
Meaning: evaluates the rising edge of a complete boolean expression
Syntax: <edge> := REDGE (<boo_expression>,<memo_variable>);

Operands: first operand is any boolean variable or complex expression
second operand is an internal boolean variable used to store the last
state of the expression

Return value: TRUE when the expression changes from FALSE to TRUE
FALSE for all other cases

The rising edge of an expression cannot be detected more than once in the same execution cycle,
using the REDGE operator. This operator can be used to describe the condition attached to an
SFC transition.

Warning: The "memory" boolean variable used to store the last state of the expression cannot be
used as a trigger for edges of different expressions.

When the expression is a boolean variable named "xxx", a unique internal variable named
"EDGE_xxx" should be declared and used it in the REDGE expressions for this variable. This
method ensures that the memory variable is not overwritten during other REDGE evaluations.

Example:

(* ST program using REDGE operator *)

(* this program counts the rising edges of a boolean input *)
(* Bi120 is an input boolean variable *)
(* Edge_Bi120 is the memory of the Bi120 variable state *)

If REDGE (Bi120, Edge_Bi120) Then
Counter := Counter + 1;

End_if;

Note: this operator is not in the IEC1131-3 norm. You may prefer the use of R_TRIG standard
block. It has been kept for compatibility reasons.

"FEDGE" operator
Name: FEDGE
Meaning: evaluates the falling edge of a boolean expression
Syntax: <edge> := FEDGE (<boo_expression>, <memo_variable>);
Operands: first operand is any boolean variable or complex expression

second operand is an internal boolean variable used to store
the last state of the expression

Return value: TRUE when the expression changes from TRUE to FALSE
FALSE for all other cases

The falling edge of an expression cannot be detected more than once in the same execution cycle,
using the REDGE operator. The operator can be used to describe the condition attached to an
SFC transition.
Warning: The "memory" boolean variable used to store the last state of the expression cannot be
used as a trigger for edges of different expressions.

When the expression is a boolean variable named "xxx", a unique internal variable named
"EDGE_xxx" should be declared and used it in the FEDGE expressions for this variable. This
method ensures that the memory variable is not overwritten during other FEDGE evaluations.

Example:

(* ST program using FEDGE operator *)

(* this program counts the falling edges of a boolean input *)
(* Bi120 is an input boolean variable *)
(* Edge_Bi120 is the memory of the Bi120 variable state *)

If FEDGE (Bi120, Edge_Bi120) Then
Counter := Counter + 1;

End_if;

Note: this operator is not in the IEC1131-3 norm. You may prefer the use of F_TRIG standard
block. It has been kept for compatibility reasons.

B.7.5 ST basic statements

The basic statements of the ST language are:
- Assignment
- RETURN statement
- IF-THEN-ELSIF-ELSE structure
- CASE statement
- WHILE iteration statement
- REPEAT iteration statement
- FOR iteration statement
- EXIT statement

Assignment
Name: :=
Meaning: assigns a variable to an expression
Syntax: <variable> := <any_expression> ;
Operands: variable must be internal or output

variable and expression must have the same type

The expression can be a call to a sub-program or a function from the ISaGRAF library

Example:

(* ST program with assignments *)

(* variable <<= variable *)
bo23 := bo10;

(* variable <<= expression *)
bo56 := bx34 OR alrm100 & (level >= over_value);
result := (100 * input_value) / scale;

(* assignment with sub-program return value *)
rc := PSelect ();

(* assignment with function call *)
limited_value := min (16, max (0, input_value));

RETURN statement
Name: RETURN
Meaning: terminates the execution of the current program
Syntax: RETURN ;
Operands: (none)

In an SFC action block, the RETURN statement indicates the end of the execution of that block
only.

Example:

(* FBD specification of the program: programmable counter *)

CU

RESET

PV

Q

CV

CTU

(* ST implementation of the program, using RETURN statement *)

If not (CU) then
Q := false;
CV := 0;
RETURN; (* terminates the program *)

end_if;

if R then
CV := 0;

else
if (CV < PV) then

CV := CV + 1;
end_if;

end_if;
Q := (CV >= PV);

IF-THEN-ELSIF-ELSE statement
Name: IF ... THEN ... ELSIF ... THEN ... ELSE ... END_IF
Meaning: executes one of two lists of ST statements

selection is made according to the value
of a boolean expression

Syntax: IF <boolean_expression> THEN
 <statement> ;
 <statement> ;
 ...
ELSIF <boolean_expression> THEN

 <statement> ;
 <statement> ;
 ...
ELSE
 <statement> ;
 <statement> ;
 ...
END_IF;

The ELSE and ELSIF statements are optional. If the ELSE statement is not written, no instruction
is executed when the condition is FALSE.

Example:

(* ST program using IF statement *)

IF manual AND not (alarm) THEN
level := manual_level;
bx126 := bi12 OR bi45;

ELSIF over_mode THEN
level := max_level;

ELSE
level := (lv16 * 100) / scale;

END_IF;

(* IF structure without ELSE *)
If overflow THEN

alarm_level := true;
END_IF;

CASE statement
Name: CASE ... OF ... ELSE ... END_CASE
Meaning: executes one of several lists of ST statements

selection is made according to an integer expression
Syntax: CASE <integer_expression> OF

 <value> : <statements> ;
 <value> , <value> : <statements> ;
 ...
ELSE
 <statements> ;
END_CASE;

Case values must be integer constant expressions. Several values, separated by comas, can lead
to the same list of statements. The ELSE statement is optional.

Example:

(* ST program using CASE statement *)

CASE error_code OF
255: err_msg := 'Division by zero';

fatal_error := TRUE;
1: err_msg := 'Overflow';
2, 3: err_msg := 'Bad sign';

ELSE
err_msg := 'Unknown error';

END_CASE;

WHILE statement
Name: WHILE ... DO ... END_WHILE
Meaning: iteration structure for a group of ST statements

the "continue" condition is evaluated BEFORE any iteration
Syntax: WHILE <boolean_expression> DO

 <statement> ;
 <statement> ;
 ...
END_WHILE ;

Warning: Because ISaGRAF is a synchronous system, input variables are not refreshed during
WHILE iterations. The change of state of an input variable cannot be used to describe the
condition of a WHILE statement.

Example:

(* ST program using WHILE statement *)

(* this program uses specific "C" functions to read characters *)
(* on a serial port *)

string := ''; (* empty string *)
nbchar := 0;

WHILE ((nbchar < 16) & ComIsReady ()) DO
string := string + ComGetChar ();
nbchar := nbchar + 1;

END_WHILE;

REPEAT statement
Name: REPEAT ... UNTIL ... END_REPEAT
Meaning: iteration structure for a group of ST statements

the "continue" condition is evaluated AFTER any iteration
Syntax: REPEAT

 <statement> ;
 <statement> ;
 ...
UNTIL <boolean_condition>
END_REPEAT ;

Warning: Because ISaGRAF is a synchronous system, input variables are not refreshed during
REPEAT iterations. The change of state of an input variable cannot be used to describe the
ending condition of a REPEAT statement.

Example:

(* ST program using REPEAT statement *)

(* this program uses specific "C" functions to read characters *)
(* on a serial port *)

string := ''; (* empty string *)
nbchar := 0;
IF ComIsReady () THEN

REPEAT
string := string + ComGetChar ();
nbchar := nbchar + 1;

UNTIL ((nbchar >= 16) OR NOT (ComIsReady ()))
END_REPEAT;

END_IF;

FOR statement
Name: FOR ... TO ... BY ... DO ... END_FOR
Meaning: executes a limited number of iterations,

using an integer analog index variable
Syntax: FOR <index> := <mini> TO <maxi> BY <step> DO

 <statement> ;
 <statement> ;
END_FOR;

Operands: index: internal analog variable increased at any loop
mini: initial value for index (before first loop)
maxi: maximum allowed value for index
step: index increment at each loop

The [BY step] statement is optional. If not specified, the increment step is 1

Warning: Because ISaGRAF is a synchronous system, input variables are not refreshed during
FOR iterations.

This is the "while" equivalent of a FOR statement:

index := mini;
while (index <= maxi) do
 <statement> ;
 <statement> ;
 index := index + step;
end_while;

Example:

(* ST program using FOR statement *)
(* this program extracts the digit characters of a string *)

length := mlen (message);

target := ''; (* empty string *)
FOR index := 1 TO length BY 1 DO

code := ascii (message, index);
IF (code >= 48) & (code <= 57) THEN

target := target + char (code);
END_IF;

END_FOR;

EXIT statement
Name: EXIT
Meaning: exit from a FOR, WHILE or REPEAT iteration statement
Syntax: EXIT;
Operands: (none)

The EXIT is commonly used within an IF statement, inside a FOR, WHILE or REPEAT block.

Example:

(* ST program using EXIT statement *)
(* this program searches for a character in a string *)

length := mlen (message);
found := NO;
FOR index := 1 TO length BY 1 DO

code := ascii (message, index);
IF (code = searched_char) THEN

found := YES;
EXIT;

END_IF;
END_FOR;

B.7.6 ST extensions

The following functions are extensions of the ST language:
- TSTART - TSTOP: timer control

The following statements and functions are available to control the execution of the SFC child
programs. They may be used inside ACTION(): ... END_ACTION; blocks in SFC steps.

- GSTART starts an SFC program
- GKILL kills an SFC program
- GFREEZE freezes an SFC program
- GRST restarts a frozen SFC program
- GSTATUS gets current status of an SFC program

Warning: These functions are not in the IEC 1131-3 norm.
Easy equivalent can be found for GSTART and GKILL using the following syntax in the SFC step:

child_name(S); (* equivalent to GSTART(child_name); *)
child_name(R); (* equivalent to GKILL(child_name); *)

The following fields can be used to access the status of an SFC step:
GSnnn.x boolean value that represents the activity of the step
GSnnn.t time elapsed since the last activation of the step

("nnn" is the reference number of the SFC step)

It is also possible to test the activity of a step declared in another SFC program, by using the
following syntax:

GSnnn(progname).x

Warning: referencing a step of an other program, using this syntax is not in the IEC 1131-3 norm.
An easy way to do the same respecting IEC rules, is to declare a global boolean variable in the
dictionary which will represent the step activity to be tested (for example ref_step_X). Then you
insert in the step, the variable with the N qualifier (ref_step_X(N);). Then in the program which
wants to test the activity of the step, you use the variable.
Prog program the other program which needs step activity of

Prog program
1

1
101

2 ref_step_X(N);
101

ref_step_X; (* = GS2(prog).X *)

2
102

TSTART statement
Name: TSTART
Meaning: starts the counting of a timer variable

timer value is not modified by the TSTART command, i.e. the counting
starts from the current value of the timer.

Syntax: TSTART (<timer_variable>);
Operands: any inactive timer variable
Return value: (none)

Example:

(* SFC program using TSTART and TSTOP statements *)

11 ACTION(P):
 TSTOP(tm_ctrl);
 alarm := not(bi100);
END_ACTION;

10 ACTION(P):
 bo100 := TRUE; (* boolean output *)
 tm_ctrl := t#0s;
 TSTART(tm_ctrl);
END_ACTION;

bi100 OR (tm_ctrl > time_out);

Time diagram if bi100 is always FALSE:

GS10.X

GS11.X

tm_ctrl
timeout

0

The timer keeps the same value during one cycle.

TSTOP statement
Name: TSTOP
Meaning: stops updating a timer variable

timer value is not modified by the TSTOP command
Syntax: TSTOP (<timer_variable>);
Operands: any active timer variable
Return value: (none)

Example: See TSTART (the function is described above)

GSTART statement
Name: GSTART
Meaning: starts a child SFC program by putting a token

into each of its initial steps
Syntax: GSTART (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: (none)

Children of the child program are not automatically started by the GSTART statement.
Note: As GSTART is not in the IEC 1131-3 norm, prefer the use of the S qualifier, with the
following syntax to start a child SFC:

Child_name(S);

Example: Use of GSTART and GKILL
(* Sequence 'Sfather' *) (* Sequence 'Schild' *)

1 1 Bo100;

1
Run_cmd;

1
GS1.t > t#2s;

2 ACTION(P):
 GSTART(Schild);
END_ACTION;

2 Bo101;

2
NOT (Run_cmd);

2
GS2.t > t#2s;

3 ACTION(P):
 GKILL(Schild);
END_ACTION;

1

3
Run_cmd;

1

GKILL statement
Name: GKILL
Meaning: kills a child SFC program by removing the tokens

currently existing in its steps
Syntax: GKILL (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: (none)

Children of the child program are automatically killed with the specified program.
Note: As GKILL is not in the IEC 1131-3 norm, prefer the use of the R qualifier, with the following
syntax to kill a child SFC:

Child_name(R);

Example: See GSTART (function described above)

GFREEZE statement
Name: GFREEZE
Meaning: Suspends the execution of a child SFC program.

Frozen program can be restarted by the GRST statement.
Syntax: GFREEZE (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: (none)

Children of the child program are automatically frozen along with the specified program.
Note: GFREEZE is not in the IEC 1131-3 norm.

Example:

1
Suspend_cmd;

2 ACTION(P):
 GFREEZE(Schild);
END_ACTION;

2
NOT (Suspend_cmd);

3 ACTION(P):
 GRST(Schild);
END_ACTION;

GRST statement
Name: GRST
Meaning: Restarts a child SFC program frozen by the GFREEZE statement.
Syntax: GRST (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: (none)

Children of the child program are automatically restarted by the GRST statement
Note: GRST is not in the IEC 1131-3 norm.

Example: See GFREEZE (function described above)

GSTATUS statement
Name: GSTATUS
Meaning: returns the current status of an SFC program
Syntax: <ana_var> := GSTATUS (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: 0 = program is inactive (killed)

1 = program is active (started)
2 = program is frozen

Note: GSTATUS is not in the IEC 1131-3 norm.

Example:

1

1
Run_cmd;

2 ACTION(P):
 GSTART(Schild);
END_ACTION;

201 ACTION(N):
 if GSTATUS(Schild) = 0 then
 Mstat := 'Stopped';
 else
 Mstat := 'Running';
 end_if;
END_ACTION;2

NOT(Run_cmd);

3 ACTION(P):
 GKILL(Schild);
END_ACTION;

3
Run_cmd;

2

B.8 IL language

Instruction List, or IL is a low level language. Instructions always relate to the current result (or
IL register). The operator indicates the operation that must be made between the current value
and the operand. The result of the operation is stored again in the current result.

B.8.1 IL main syntax

An IL program is a list of instructions. Each instruction must begin on a new line, and must
contain an operator, completed with optional modifiers and, if necessary, for the specific
operation, one or more operands, separated with commas (','). A label followed by a colon (':')
may precede the instruction. If a comment is attached to the instruction, it must be the last
component of the line. Comments always begin with '(*' and ends with '*)'. Empty lines may be
entered between instructions. Comments may be put on empty lines. Below are examples of
instruction lines:

Label Operator Operand Comments
Start: LD IX1 (* push button *)

ANDN MX5 (* command is not forbidden *)
ST QX2 (* start motor *)

Labels
A label followed by a colon (':') may precede the instruction. A label can be put on an empty line.
Labels are used as operands for some operations such as jumps. Naming labels must conform to
the following rules:
- name cannot exceed 16 characters
- first character must be a letter
- following characters must be letters, digits or '_' character

The same name cannot be used for more than one label in the same IL program. A label can have
the same name as a variable.

Operator modifiers
The available operator modifiers are shown below. The modifier character must complete the
name of the operator, with no blank characters between them:

N boolean negation of the operand
(delayed operation
C conditional operation

The 'N' modifier indicates a boolean negation of the operand. For example, the instruction ORN
IX12 is interpreted as: result := result OR NOT (IX12).

The parenthesis '(' modifier indicates that the evaluation of the instruction must be delayed until
the closing parenthesis ')' operator is encountered.

The 'C' modifier indicates that the attached instruction must be executed only if the current result
has the boolean value TRUE (different than 0 for non-boolean values). The 'C' modifier can be
combined with the 'N' modifier to indicate that the instruction must be executed only if the current
result has the boolean value FALSE (or 0 for non-boolean values).

Delayed operations
Because there is only one IL register (current result), some operations may have to be delayed, so
that the execution order or the instructions can be changed. Parentheses are used to indicate
delayed operations:

'(' is a modifier indicates the operation to be delayed
')' is an operator executes the delayed operation

The opening parenthesis '(' modifier indicates that the evaluation of the instruction must be
delayed until the closing parenthesis ')' operator is encountered. For example, following sequence:

AND(IX12
OR IX35
)

is interpreted as:

result := result AND (IX12 OR IX35)

B.8.2 IL operators

 The following table summarizes the standard operators of the IL language:

Operator Modifiers Operand Description
LD N Variable, constant Loads operand
ST N Variable Stores current result
S
R

BOO variable
BOO variable

Sets to TRUE
Resets to FALSE

AND
&

OR
XOR

N (
N (
N (
N (

BOO
BOO
BOO
BOO

boolean AND
boolean AND
boolean OR
exclusive OR

ADD
SUB
MUL
DIV

(
(
(
(

variable, constant
variable, constant
variable, constant
variable, constant

Addition
Subtraction

Multiplication
Division

GT
GE
EQ
LE
LT
NE

(
(
(
(
(
(

variable, constant
variable, constant
variable, constant
variable, constant
variable, constant
variable, constant

Test: >
Test: >=
Test: =
Test <=
Test <
Test <>

CAL
JMP
RET

C N
C N
C N

Function block instance name
Label

Calls a function block
Jumps to label

Returns from sub-program
) Executes delayed operation

In the next section, only operators which are specific to the IL language are described, other
standard operators can be found in the section "standard operators, function blocks and
functions".

LD operator
Operation loads a value in the current result
Allowed modifiers N
Operand constant expression

internal, input or output variable

Example:

(* EXAMPLES OF LD OPERATIONS *)
LDex: LD false (* result := FALSE boolean constant *)

LD true (* result := TRUE boolean constant *)
LD 123 (* result := integer constant *)
LD 123.1 (* result := real constant *)
LD t#3ms (* result := time constant *)
LD boo_var1 (* result := boolean variable *)
LD ana_var1 (* result := analog variable *)
LD tmr_var1 (* result := timer variable *)
LDN boo_var2 (* result := NOT (boolean variable) *)

ST operator
Operation stores the current result in a variable

the current result is not modified by this operation
Allowed modifiers N
Operand internal or output variable

Example:

(* EXAMPLES OF ST OPERATIONS *)
STboo: LD false

ST boo_var1 (* boo_var1 := FALSE *)
STN boo_var2 (* boo_var2 := TRUE *)

STana: LD 123
ST ana_var1 (* ana_var1 := 123 *)

STtmr: LD t#12s
ST tmr_var1 (* tmr_var1 := t#12s *)

S operator
Operation: stores the boolean value TRUE in a boolean variable, if the current result

has the boolean value TRUE. No operation is processed if current result
is FALSE. The current result is not modified by this operation

Allowed modifiers: (none)
Operand: output or internal boolean variable

Example:

(* EXAMPLES OF S OPERATIONS *)
SETex: LD true (* current result := TRUE *)

S boo_var1 (* boo_var1 := TRUE *)
(* current result is not modified *)

LD false (* current result := FALSE *)
S boo_var1 (* nothing done - boo_var1 unchanged *)

R operator
Operation stores the boolean value FALSE in a boolean variable, if the current

result has the boolean value TRUE. No operation is processed if current
result is FALSE. The current result is not modified by this operation

Allowed modifiers (none)
Operand output or internal boolean variable

Example:

(* EXAMPLES OF R OPERATIONS *)
RESETex: LD true (* current result := TRUE *)

R boo_var1 (* boo_var1 := FALSE *)
(* current result is not modified *)

ST boo_var2 (* boo_var2 := TRUE *)
LD false (* current result := FALSE *)
R boo_var1 (* nothing done - boo_var1 unchanged *)

JMP operator
Operation jumps to the specified label
Allowed modifiers C N
Operand label defined in the same IL program

Example:

(* the following example tests the value of an analog selector (0 or 1 or 2)
(* to set one from 3 output booleans. Test "is equal to 0" is made with
(* the JMPC operator *)

JMPex: LD selector (* selector is 0 or 1 or 2 *)
BOO (* conversion to boolean *)
JMPC test1 (* if selector = 0 then *)
LD true
ST bo0 (* bo0 := true *)
JMP JMPend (* end of the program *)

test1: LD selector
SUB 1 (* decrease selector: is now 0 or 1 *)
BOO (* conversion to boolean *)
JMPC test2 (* if selector = 0 then *)

LD true
ST bo1 (* bo1 := true *)
JMP JMPend (* end of the program *)

test2: LD true (* last possibility *)
ST bo2 (* bo2 := true *)

JMPend: (* end of the IL program *)

RET operator
Operation ends the current instruction list. If the IL sequence is a sub-program, the

current result is returned to the calling program
Allowed modifiers C N
Operand (none)

Example:

(* the following example tests the value of an analog selector (0 or 1 or 2)
(* to set one from 3 output booleans. Test "is equal to 0" is made with
(* the JMPC operator

JMPex: LD selector (* selector is 0 or 1 or 2 *)
BOO (* conversion to boolean *)
JMPC test1 (* if selector = 0 then *)
LD true
ST bo0 (* bo0 := true *)
RET (* end - return 0 *)

(* decrease selector *)
test1: LD selector

SUB 1 (* selector is now 0 or 1 *)
BOO (* conversion to boolean *)
JMPC test2 (* if selector = 0 then *)
LD true
ST bo1 (* bo1 := true *)
LD 1 (* load real selector value *)
RET (* end - return 1 *)

(* last possibility *)
test2: RETNC (* returns if the selector has *)

(* an invalid value *)
LD true
ST bo2 (* bo2 := true *)
LD 2 (* load real selector value *)
 (* end - return 2 *)

")" operator
Operation executes a delayed operation. The delayed operation was notified by '('
Allowed modifiers (none)
Operand (none)

Example:

(* The following program interleaves delayed operations: *)

(* res := a1 + (a2 * (a3 - a4) * a5) + a6; *)

Delayed: LD a1 (* result := a1; *)
ADD(a2 (* delayed ADD - result := a2; *)
MUL(a3 (* delayed MUL - result := a3; *)
SUB a4 (* result := a3 - a4; *)
) (* execute delayed MUL - result := a2 * (a3-a4); *)
MUL a5 (* result := a2 * (a3 - a4) * a5; *)
) (* execute delayed ADD *)

(* result := a1 + (a2 * (a3 - a4) * a5); *)
ADD a6 (* result := a1 + (a2 * (a3 - a4) * a5) + a6; *)
ST res (* store current result in variable res *)

Calling sub-programs or functions
A sub-program or a function (written in any of the IL, ST, LD, FBD or "C" language) is called from
the IL language, using its name as an operator.

Operation executes a sub-program or a function - the value returned by the sub-
program or function is stored into the IL current result

Allowed modifiers (none)
Operand The first calling parameter must be stored in the current result before the

call. The following ones are expressed in the operand field, separated by
comas.

Example:

(* Calling program : converts an analog value into a time value *)

Main: LD bi0
SUBPRO bi1,bi2 (* call sub-program to get analog value *)
ST result (* result := value returned by sub-program *)
GT vmax (* test value overflow *)
RETC (* return if overflow *)
LD result
MUL 1000 (* converts seconds in milliseconds *)
TMR (* converts to a timer *)
ST tmval (* stores converted value in a timer *)

(* Called sub-program named 'SUBPRO' : evaluates the analog value *)
(* given as a binary value on three boolean inputs: in0, in1, in2 are the three boolean input
parameters of the sub-program *)

LD in2
ANA (* result = ana (in2); *)
MUL 2 (* result := 2*ana (in2); *)
ST temporary (* temporary := result *)
LD in1
ANA
ADD temporary (* result := 2*ana (in2) + ana (in1); *)
MUL 2 (* result := 4*ana (in2) + 2*ana (in1); *)
ST temporary (* temporary := result *)
LD in0

ANA
ADD temporary (* result := 4*ana (in2) + 2*ana (in1)+ana (in0); *)
ST SUBPRO (* return current result to calling program *)

Calling function blocks: CAL operator
Operation calls a function block
Allowed modifiers C N
Operand Name of the function block instance.

The input parameters of the blocks must be assigned before the call
using LD/ST operations sequence.
Output parameters are known if used.

Example1:

(* Calling function block SR : SR1 is an instance of SR *)
LD auto_mode
AND start_cmd
ST SR1.set1
LD stop_cmd
ST SR1.reset
CAL SR1
LD SR1.Q1
ST command

(* FBD equivalent : *)

SR
SET1

RESET Q1

auto_mode
start_cmd
stop_cmd command

&

Example 2
(*We suppose R_TRIG1 is an instance of R_TRIG block and CTU1 is an instance of CTU
block*)
LD command
ST R_TRIG1.clk
CAL R_TRIG1
LD R_TRIG1.Q
ST CTU1.cu
LDN auto_mode
ST CTU1.reset
LD 100
ST CTU1.pv
CAL CTU1
LD CTU1.Q
ST overflow
LD CTU1.cv
ST result

(* FBD equivalent: *)

CTU
CU

RESET

PV

Q

CV

command
auto_mode

100
overflow

result

r_trig
CLK Q

B.9 Standard operators, function blocks and functions

B.9.1 Standard operators

The following are standard operators of the IEC languages.

Data manipulation....................... Assignment, Analog negation
Boolean operations..................... Boolean AND

Boolean OR
Boolean Exclusive OR

Arithmetic operations.................. Addition
Subtraction
Multiplication
Division

Logic operations Analog bit to bit AND mask
Analog bit to bit OR mask
Analog bit to bit Exclusive OR mask
Bit to bit negation

Comparison tests Less than
Less or equal to
Greater than
Greater or equal to
Is equal to
Is not equal to

Data conversion.......................... Convert to Boolean
Convert to Integer Analog
Convert to Real Analog
Convert to Timer
Convert to Message

Other .. Message concatenation
System access
Operate I/O channel

1 gain

1

IN Q

Arguments:
IN any type
Q any type

Description:
assignment of one variable into another one

This block is very useful to directly link a diagram input and a diagram output. It can also be used
(with a boolean negation line) to invert the state of a line connected to a diagram output.

(* FBD example with assignment Blocks *)

ai10

bi1
bi2

1
IN Q

&
1

IN Q bo100

ao23

(* ST equivalence: *)
ao23 := ai10;
bo100 := NOT (bi1 AND bi2);

(* IL equivalence: *)
LD ai10
ST ao23
LD bi1
AND bi2
STN bo100

NEG

Neg

IN Q

Arguments:
IN INT-REAL input and output must have same format
Q INT-REAL

Description:
Assignment of the negation of a variable.

(* FBD example with negation Blocks *)

ai10

ri1
ri2

Neg
IN Q

+
Neg

IN Q ro100

ao23

(* ST equivalence: *)
ao23 := - (ai10);
ro100 := - (ri1 + ri2);

(* IL equivalence: *)
LD ai10
MUL -1

ST ao23
LD ri1
ADD ri2
MUL -1.0
ST ro100

& AND

&

Note: For this operator, the number of its inputs can be extended to more than two.

Arguments:
(inputs) BOOLEAN
output BOOLEAN boolean AND of the input terms

Description:
Boolean AND between two or more terms.

(* FBD example with "AND" Blocks *)

bi101
bi102

bi51
bi52
bi53

&

&

bo10

bo5

(* ST equivalence: *)
bo10 := bi101 AND NOT (bi102);
bo5 := (bi51 AND bi52) AND bi53;

(* IL equivalence *)
LD bi101 (* current result := bi101 *)
ANDN bi102 (* current result := bi101 AND not(bi102) *)
ST bo10 (* bo10 := current result *)
LD bi51 (* current result := bi51;
& bi52 (* current result := bi51 AND bi52 *)
& bi53 (* current result := (bi51 AND bi52) AND bi53 *)
ST bo5 (* bo5 := current result *)

>=1 OR

>=1

Note: For this operator, the number of its inputs can be extended to more than two.

Arguments:
(inputs) BOOLEAN
output BOOLEAN boolean OR of the input terms

Description:
Boolean OR of two or more terms.

(* FBD example with "OR" Blocks *)

bi101
bi102

bi51
bi52
bi53

>=1

>=1

bo10

bo5

(* ST equivalence: *)
bo10 := bi101 OR NOT (bi102);
bo5 := (bi51 OR bi52) OR bi53;

(* IL equivalence: *)
LD bi101
ORN bi102
ST bo10
LD bi51
OR bi52
OR bi53
ST bo5

=1 XOR

=1
IN1

IN2 Q

Arguments:
IN1 BOOLEAN
IN2 BOOLEAN
Q BOOLEAN boolean exclusive OR of the 2 input terms

Description:
Boolean exclusive OR between two terms.

(* FBD example with "XOR" Blocks *)

bi101
bi102

bi51
bi52
bi53

=1
IN1

IN2 Q

=1
IN1

IN2 Q

bo10

bo5

=1
IN1

IN2 Q

(* ST equivalence: *)
bo10 := bi101 XOR NOT (bi102);
bo5 := (bi51 XOR bi52) XOR bi53;

(* IL equivalence: *)
LD bi101
XORN bi102
ST bo10
LD bi51
XOR bi52
XOR bi53
ST bo5

+

+

Note: For this operator, the number of its inputs can be extended to more than two.

Arguments:
(inputs) INT-REAL can be INTEGER or REAL

(all inputs must have the same format)
output INT-REAL signed addition of the input terms

Description:
Addition of two or more analog variables.

(* FBD example with Addition Blocks *)

ai101
ai102

ai51
ai52
ai53

+

+

ao10

ao5

(* ST equivalence: *)
ao10 := ai101 + ai102;

ao5 := (ai51 + ai52) + ai53;

(* IL equivalence: *)
LD ai101
ADD ai102
ST ao10
LD ai51
ADD ai52
ADD ai53
ST ao5

-

-
IN1

IN2 Q

Arguments:
IN1 INT-REAL can be INTEGER or REAL
IN2 INT-REAL (IN1 and IN2 must have the same format)
Q INT-REAL subtraction (first - second)

Description:
Subtraction of two analog variables (first - second).

(* FBD example with Subtraction Blocks *)

ai101
ai102

ai51
1

ai53

-
IN1

IN2 Q

-
IN1

IN2 Q

ao10

ao5

-
IN1

IN2 Q

 (* ST equivalence: *)
ao10 := ai101 - ai102;
ao5 := (ai51 - 1) - ai53;

(* IL equivalence: *)
LD ai101
SUB ai102
ST ao10
LD ai51
SUB 1
SUB ai53
ST ao5

*

*

Note: For this operator, the number of its inputs can be extended to more than two.

Arguments:
(inputs) INT-REAL can be INTEGER or REAL

(all inputs must have the same format)
output INT-REAL signed multiplication of the input terms

Description:
Multiplication of two or more analog variables.

(* FBD example with Multiplication blocks *)

ai101
ai102

ai51
ai52
ai53

*

*

ao10

ao5

(* ST equivalence *)
ao10 := ai101 * ai102;
ao5 := (ai51 * ai52) * ai53;

(* IL equivalence: *)
LD ai101
MUL ai102
ST ao10
LD ai51
MUL ai52
MUL ai53
ST ao5

/

/

IN1

IN2 Q

Arguments:
IN1 INT-REAL can be INTEGER or REAL (operand)
IN2 INT-REAL non-zero analog value (divisor)

(IN1 and IN2 must have the same format)
Q INT-REAL signed integer or real division of IN1 by IN2

Description:
Division of two analog variables (the first divided by the second).

(* FBD example with Division blocks *)

ai101
ai102

ai51
2

ai53

/
IN1

IN2 Q

/
IN1

IN2 Q

ao10

ao5

/
IN1

IN2 Q

(* ST Equivalence: *)
ao10 := ai101 / ai102;
ao5 := (ai5 / 2) / ai53;

(* IL equivalence: *)
LD ai101
DIV ai102
ST ao10
LD ai51
DIV 2
DIV ai53
ST ao5

AND_MASK

and_mask
IN

MSK Q

Arguments:
IN INT must have integer format
MSK INT must have integer format
Q INT bit to bit logical AND between IN and MSK

Description:
Integer analog AND bit to bit mask.

(* FBD example with Analog AND_MASK blocks *)

xvalue
1

and_mask
IN

MSK Q parity

and_mask
IN

MSK Q

16#abc
16#f0f result

(* ST Equivalence: *)
parity := AND_MASK (xvalue, 1); (* 1 if xvalue is odd *)
result := AND_MASK (16#abc, 16#f0f); (* equals 16#a0c *)

(* IL equivalence: *)
LD xvalue
AND_MASK 1
ST parity
LD 16#abc
AND_MASK 16#f0f
ST result

OR_MASK

or_mask
IN

MSK Q

Arguments:
IN INT must have integer format
MSK INT must have integer format
Q INT bit to bit logical OR between IN and MSK

Description:
Integer analog OR bit to bit mask.

(* FBD example with Analog OR_MASK blocks *)

xvalue
1

or_mask
IN

MSK Q parity

or_mask
IN

MSK Q

16#abc
16#f0f result

(* ST Equivalence: *)
is_odd := OR_MASK (xvalue, 1); (* makes value always odd *)
result := OR_MASK (16#abc, 16#f0f); (* equals 16#fbf *)

(* IL equivalence: *)
LD xvalue
OR_MASK 1
ST is_odd

LD 16#abc
OR_MASK 16#f0f
ST result

XOR_MASK

xor_mask
IN

MSK Q

Arguments:
IN INT must have integer format
MSK INT must have integer format
Q INT bit to bit logical Exclusive OR between IN and MSK

Description:
Integer analog exclusive OR bit to bit mask

(* FBD example with XOR_MASK blocks *)

prevcrc
nextc

xor_mask
IN

MSK Q crc32

16#012
16#011

xor_mask
IN

MSK Q result

(* ST Equivalence: *)
crc32 := XOR_MASK (prevcrc, nextc);
result := XOR_MASK (16#012, 16#011); (* equals 16#003 *)

(* IL equivalence: *)
LD prevcrc
XOR_MASK nextc
ST crc32
LD 16#012
XOR_MASK 16#011
ST result

NOT_MASK

not_mask
IN Q

Arguments :
IN INT must have integer format
Q INT bit to bit negation on 32 bits of IN

Description:

Integer analog bit to bit negation mask

(* FBD example with NOT_MASK blocks *)

16#1234
not_mask

IN Q result

(*ST equivalence: *)
result := NOT_MASK (16#1234);
(* result is 16#FFFF_EDCB *)

(* IL equivalence: *)
LD 16#1234
NOT_MASK
ST result

<

<

IN1

IN2 Q

Arguments:
IN1 INT-REAL-

TMR-MSG
IN2 INT-REAL-

TMR-MSG both inputs must have the same type
Q BOOLEAN TRUE if IN1 < IN2

Description:
Test if one value is LESS THAN another one (on analog, timer or messages)

(* FBD example with "Less than" blocks *)

10
25

'z'
'B'

aresult

mresult

<
IN1

IN2 Q

<
IN1

IN2 Q

(* ST Equivalence: *)
aresult := (10 < 25); (* aresult is TRUE *)
mresult := ('z' < 'B'); (* mresult is FALSE *)

(* IL equivalence: *)
LD 10
LT 25
ST aresult
LD 'z'
LT 'B'

ST mresult

<=

<=

IN1

IN2 Q

Arguments:
IN1 INT-REAL-MSG
IN2 INT-REAL-MSG both inputs must have the same type
Q BOOLEAN TRUE if IN1 <= IN2

Description:
Test if one value is LESS THAN or EQUAL TO another one (on analog, or messages)

(* FBD example with "Less or equal to" blocks *)

10
25

'ab'
'ab'

aresult

mresult

<=
IN1

IN2 Q

<=
IN1

IN2 Q

(* ST Equivalence: *)
aresult := (10 <= 25); (* aresult is TRUE *)
mresult := ('ab' <= 'ab'); (* mresult is TRUE *)

(* IL equivalence: *)
LD 10
LE 25
ST aresult
LD 'ab'
LE 'ab'
ST mresult

>

>

IN1

IN2 Q

Arguments:
IN1 INT-REAL-

TMR-MSG
IN2 INT-REAL-

TMR-MSG both inputs must have the same type

Q BOOLEAN TRUE if IN1 > IN2

Description:
Test if one value is GREATER THAN another one (on analog, timer or messages)

(* FBD example with "Greater than" blocks *)

10
25

'ab'
'a'

aresult

mresult

>
IN1

IN2 Q

>
IN1

IN2 Q

(* ST Equivalence: *)
aresult := (10 > 25); (* aresult is FALSE *)
mresult := ('ab' > 'a'); (* mresult is TRUE *)

(* IL equivalence: *)
LD 10
GT 25
ST aresult
LD 'ab'
GT 'a'
ST mresult

>=

>=

IN1

IN2 Q

Arguments:
IN1 INT-REAL-MSG
IN2 INT-REAL-MSG both inputs must have the same type
Q BOOLEAN TRUE if IN1 >= IN2

Description:
Test if one value is GREATER THAN or EQUAL TO another one (on analog, or messages)

(* FBD example with "Greater or Equal to" blocks *)

10
25

'ab'
'ab'

aresult

mresult

>=
IN1

IN2 Q

>=
IN1

IN2 Q

(* ST Equivalence: *)

aresult := (10 >= 25); (* aresult is FALSE *)
mresult := ('ab' >= 'ab'); (* mresult is TRUE *)

(* IL equivalence: *)
LD 10
GE 25
ST aresult
LD 'ab'
GE 'ab'
ST mresult

=

=

IN1

IN2 Q

Arguments:
IN1 INT-REAL-MSG
IN2 INT-REAL-MSG both inputs must have the same type
Q BOOLEAN TRUE if IN1 = IN2

Description:
Test if one value is EQUAL TO another one (on analog, or messages)

(* FBD example with "Is Equal to" blocks *)

10
25

'ab'
'ab'

aresult

mresult

=
IN1

IN2 Q

=
IN1

IN2 Q

(* ST Equivalence: *)
aresult := (10 = 25); (* aresult is FALSE *)
mresult := ('ab' = 'ab'); (* mresult is TRUE *)

(* IL equivalence: *)
LD 10
EQ 25
ST aresult
LD 'ab'
EQ 'ab'
ST mresult

<>

<>

IN1

IN2 Q

Arguments:
IN1 INT-REAL-MSG
IN2 INT-REAL-MSG both inputs must have the same type
Q BOOLEAN TRUE if first <> second

Description:
Test if one value is NOT EQUAL TO another one (on analog, or messages)

(* FBD example with "Is Not Equal to" blocks *)

10
25

'ab'
'ab'

aresult

mresult

<>
IN1

IN2 Q

<>
IN1

IN2 Q

(* ST Equivalence: *)
aresult := (10 <> 25); (* aresult is TRUE *)
mresult := ('ab' <> 'ab'); (* mresult is FALSE *)

(* IL equivalence: *)
LD 10
NE 25
ST aresult
LD 'ab'
NE 'ab'
ST mresult

BOO

Boo

IN Q

Arguments:
IN ANY any non-boolean value
Q BOO TRUE for non-zero numerical value

FALSE for zero numerical value
TRUE for 'TRUE' message
FALSE for 'FALSE' message

Description:
Convert any variable to a boolean one

(* FBD example with "Convert to Boolean" blocks *)

Boo
IN Q

Boo
IN Q

Boo
IN Q

10

t#0s

'false'

ares

tres

mres

(* ST Equivalence: *)
ares := BOO (10); (* ares is TRUE *)
tres := BOO (t#0s); (* tres is FALSE *)
mres := BOO ('false'); (* mres is FALSE *)

(* IL equivalence: *)
LD 10
BOO
ST ares
LD t#0s
BOO
ST tres
LD 'false'
BOO
ST mres

ANA

Ana

IN Q

Arguments:
IN ANY any non-integer analog value
Q INT 0 if IN is FALSE / 1 if IN is TRUE

number of milliseconds for a timer
integer part for real analog
decimal number represented by a string

Description:
Convert any variable to an integer one

(* FBD example with "Convert to Analog" blocks *)

true

t#1s46ms

'0198'

bres

tres

mres

Ana
IN Q

Ana
IN Q

Ana
IN Q

(* ST Equivalence: *)

bres := ANA (true); (* bres is 1 *)
tres := ANA (t#1s46ms); (* tres is 1046 *)
mres := ANA ('0198'); (* mres is 198 *)

(* IL equivalence: *)
LD true
ANA
ST bres
LD t#1s46ms
ANA
ST tres
LD '0198'
ANA
ST mres

REAL

Real

IN Q

Arguments:
IN BOO-INT-

TMR any non-real analog value (no message)
Q REAL 0.0 if IN is FALSE / 1.0 if IN is TRUE

number of milliseconds for a timer
equivalent number for integer analog

Description:
Convert any variable to a real one

(* FBD example with "Convert to Real" blocks *)

true

t#1s46ms

198

bres

tres

ares

Real
IN Q

Real
IN Q

Real
IN Q

(* ST Equivalence: *)
bres := REAL (true); (* bres is 1.0 *)
tres := REAL (t#1s46ms); (* tres is 1046.0 *)
ares := REAL (198); (* ares is 198.0 *)

(* IL equivalence: *)
LD true
REAL
ST bres
LD t#1s46ms

REAL
ST tres
LD 198
REAL
ST ares

TMR

Tmr

IN Q

Arguments:
IN INT-REAL any non-timer value

IN (or integer part of IN if it is real)
is the number of milliseconds

Q TIMER time value represented by IN

Description:
Convert any analog variable to a timer one

(* FBD example with "Convert to Timer" blocks *)

Tmr
IN Q1256

1256.3
Tmr

IN Q

ares

rres

 (* ST Equivalence: *)
ares := TMR (1256); (* ares := t#1s256ms *)
rres := TMR (1256.3); (*rres := t#1s256ms *)

(* IL equivalence: *)
LD 1256
TMR
ST ares
LD 1256.3
TMR
ST rres

MSG

Msg

IN Q

Arguments:
IN BOO-

INT-REA any non-message value
Q MSG 'false' or 'true' if IN is a boolean

decimal representation if IN is an analog

Description:
Convert any variable to a message one

(* FBD example with "Convert to Message" blocks *)
Msg

IN Qtrue

125
Msg

IN Q

bres

ares

(* ST Equivalence: *)
bres := MSG (true); (* bres is 'TRUE' *)
ares := MSG (125); (* ares is '125' *)

(* IL equivalence: *)
LD true
MSG
ST bres
LD 125
MSG
ST ares

CAT

CAT

Note: For this operator, the number of its inputs can be extended to more than two.

Arguments:
(inputs) MSG (addition of all message length must not exceed output

message capacity)
output MSG concatenation of the input messages

Description:
Concat several messages into one

(* FBD example with "Message Concatenation" blocks *)
CAT

'Mr'
' '

'Jones' myname

(* ST Equivalence: use the + operator *)
myname := ('Mr' + ' ') + 'Jones';

(* means: myname := 'Mr Jones' *)

(* IL equivalence: *)
LD 'Mr'
ADD ' '
ADD 'Jones'
ST myname

SYSTEM

System

Mode

Arg Param

Arguments:
Mode INT identifies the system parameter and the access mode
Arg INT-TMR new value for a "write" access
Param INT value of the accessed parameter

Description:
Access to the system parameters

The following is the list of available commands (pre-defined keywords) for the SYSTEM function:

command meaning

SYS_TALLOWED read allowed cycle timing
SYS_TCURRENT read current cycle timing
SYS_TMAXIMUM read maximum cycle timing
SYS_TOVERFLOW read cycle timing overflows
SYS_TRESET reset timing counters
SYS_TWRITE change cycle timing
SYS_ERR_TEST check for run time errors
SYS_ERR_READ read oldest run time error

These are expected arguments for pre-defined functions of the SYSTEM function:

command argument return value

SYS_TALLOWED 0 allowed cycle timing
SYS_TCURRENT 0 current cycle timing
SYS_TMAXIMUM 0 maximum detected timing
SYS_TOVERFLOW 0 number of timing overflows
SYS_TRESET 0 0
SYS_TWRITE new allowed cycle timing written time
SYS_ERR_TEST 0 0 if no error detected
SYS_ERR_READ 0 oldest error code

(* FBD example with "System" blocks *)
System

Mode

Arg Param

<>
IN1

IN2 Q alarm

alarm
RETURN

nb_err

+

1 nb_err

System
Mode

Arg Param

SYS_TOVERFLOW

SYS_TRESET
0

0

rc

(* ST Equivalence: *)
alarm := (SYSTEM (SYS_TOVERFLOW, 0) <> 0);
If (alarm) Then

nb_err := nb_err + 1;
rc := SYSTEM (SYS_TRESET, 0);

End_If;

OPERATE

Operate
IO

Funct

Arg Q

Arguments:
IO ANY input or output variable
Funct INT action to be operated
Arg INT argument for I/O action
Q INT return check

Description:
Access to an I/O channel

The meaning of OPERATE arguments depends on the I/O interface implementation. Refer to your
hardware manual or corresponding I/O board technical note to learn more about OPERATE
capabilities.

B.9.2 Standard function blocks

These are standard function blocks supported by the ISaGRAF system. Such function blocks are
pre-defined and do not have to be declared in the library.

Booleans..................................... SR Set dominant bistable
RS Reset dominant bistable
R_Trig Rising edge detection
F_Trig Falling edge detection
SEMA Semaphore

Counting..................................... CTU Up counter
CTD Down counter
CTUD Up-down counter

Timers .. TON On-delay timing
TOF Off-delay timing
TP Pulse timing

Integer analogs........................... CMP Full comparison function block
StackInt Stack of integer analogs

Real analogs............................... AVERAGE Running average over N samples
HYSTER Boolean hysteresis on difference of reals
LIM_ALRM High/low limit alarm with hysteresis
INTEGRAL Integration over time
DERIVATE Differentiation according to time

Signal generation........................ BLINK Blinking boolean signal
SIG_GEN Signal generator

Note: When new "C" function blocks are created, they can be called from the FBD language.

SR

SR

SET1

RESET Q1

Arguments:
SET1 BOO if TRUE, sets Q1 to TRUE (dominant)
RESET BOO if TRUE, resets Q1 to FALSE
Q1 BOO boolean memory state

Description:
Set dominant bistable: See True table below:

Set1 Reset Q1 result Q1
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(* FBD program using "SR" block *)

SR
SET1

RESET Q1

auto_mode
start_cmd
stop_cmd command

&

(* ST Equivalence: We suppose SR1 is an instance of SR block *)
SR1((auto_mode & start_cmd), stop_cmd);
command := SR1.Q1;

(* IL Equivalence: *)
LD auto_mode
AND start_cmd
ST SR1.set1
LD stop_cmd
ST SR1.reset
CAL SR1
LD SR1.Q1
ST command

RS

RS

SET

RESET1 Q1

Arguments:
SET BOO if TRUE, sets Q1 to TRUE
RESET1 BOO if TRUE, resets Q1 to FALSE (dominant)
Q1 BOO boolean memory state

Description:
Reset dominant bistable: See True table below:

Set Reset1 Q1 result Q1
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

(* FBD program using "RS" block *)
RS

SET

RESET Q1

alarm

start_cmd

stop_cmd
command>=1

(* ST Equivalence: We suppose RS1 is an instance of RS block *)

RS1(start_cmd, (stop_cmd OR alarm));
command := RS1.Q1;

(* IL Equivalence: *)
LD start_cmd
ST RS1.set
LD stop_cmd
OR alarm
ST RS1.reset1
CAL RS1
LD RS1.Q1
ST command

R_TRIG

r_trig

CLK Q

Arguments:
CLK BOO any boolean variable
Q BOO TRUE when CLK rises from FALSE to TRUE

FALSE if all other cases

Description:
Detects a rising edge of a boolean variable

(* FBD program using "R_TRIG" block *)
r_trig

CLK Qcmd
Ana

IN Q

+

nb_edge

(* ST Equivalence: We suppose R_TRIG1 is an instance of R_TRIG block *)
R_TRIG1(cmd);
nb_edge := ANA(R_TRIG1.Q) + nb_edge;

(* IL Equivalence: *)
LD cmd
ST R_TRIG1.clk
CAL R_TRIG1
LD R_TRIG1.Q
ANA
ADD nb_edge
ST nb_edge

F_TRIG

f_trig

CLK Q

Arguments:
CLK BOO any boolean variable
Q BOO TRUE when CLK changes from TRUE to FALSE

FALSE if all other cases

Description:
Detects a falling edge of a boolean variable

(* FBD program using "F_TRIG" block *)
f_trig

CLK Qcmd
Ana

IN Q

+

nb_edge

(* ST Equivalence: We suppose F_TRIG1 is an instance of F_TRIG block *)
F_TRIG1(cmd);
nb_edge := ANA(F_TRIG1.Q) + nb_edge;

(* IL Equivalence: *)
LD cmd
ST F_TRIG1.clk
CAL F_TRIG1
LD F_TRIG1.Q
ANA
ADD nb_edge
ST nb_edge

SEMA

sema
CLAIM

RELEASE BUSY

Arguments:
CLAIM BOOLEAN "test and set" command
RELEASE BOOLEAN releases the semaphore
BUSY BOOLEAN state of the semaphore

Description:
(* "x" is a boolean variable initialized to FALSE *)
busy := x;
If claim Then

x := True;
Else

If release Then
busy := False;
x := False;

End_if;
End_if;

CTU

CTU
CU

RESET

PV

Q

CV

Arguments:
CU BOO counting input (counting when CU is TRUE)
RESET BOO reset command (dominant)
PV INT programmed maximum value
Q BOO overflow: TRUE when CV = PV
CV INT counter result

Warning: The CTU block does not detect the rising or falling edges of the counting input (CU). It
must be associated with an "R_TRIG" or "F_TRIG" block to create a pulse counter.

Description:
Count (integer) from 0 up to a given value 1 by 1

(* FBD program using "CTU" block *)
CTU

CU

RESET

PV

Q

CV

command
auto_mode

100
overflow

result

r_trig
CLK Q

(* ST Equivalence: We suppose R_TRIG1 is an instance of R_TRIG block and CTU1 is an
instance of CTU block*)
CTU1(R_TRIG1(command),NOT(auto_mode),100);
overflow := CTU1.Q;
result := CTU1.CV;

(* IL Equivalence: *)
LD command
ST R_TRIG1.clk
CAL R_TRIG1
LD R_TRIG1.Q
ST CTU1.cu
LDN auto_mode
ST CTU1.reset
LD 100
ST CTU1.pv
CAL CTU1
LD CTU1.Q

ST overflow
LD CTU1.cv
ST result

CTD

CTD
CD

LOAD

PV

Q

CV

Arguments:
CD BOO counting input

(down-counting when CD is TRUE)
LOAD BOO load command (dominant)

(CV = PV when LOAD is TRUE)
PV INT programmed initial value
Q BOO underflow: TRUE when CV = 0
CV INT counter result

Warning: The CTD block does not detect the rising or falling edges of the counting input (CD). It
must be associated with an "R_TRIG" or "F_TRIG" block to create a pulse counter.

Description:
Count (integer) from a given value down to 0 1 by 1

(* FBD program using "CTD" block *)
CTD

CD

LOAD

PV

Q

CV

command
load_cmd

100
underflow

result

f_trig
CLK Q

 (* ST Equivalence: We suppose F_TRIG1 is an instance of F_TRIG block and CTD1 is an
instance of CTD block*)
CTD1(F_TRIG1(command),load_cmd,100);
underflow := CTD1.Q;
result := CTD1.CV;

(* IL Equivalence: *)
LD command
ST F_TRIG1.clk
CAL F_TRIG1
LD F_TRIG1.Q
ST CTD1.cd
LD load_cmd
ST CTD1.load
LD 100
ST CTD1.pv
CAL CTD1

LD CTD1.Q
ST underflow
LD CTD1.cv
ST result

CTUD

CTUD
CU

CD

RESET

LOAD

PV

QU

QD

CV

Arguments:
CU BOO up-counting (when CU is TRUE)
CD BOO down-counting (when CD is TRUE)
RESET BOO reset command (dominant)

(CV = 0 when RESET is TRUE)
LOAD BOO load command (CV = PV when LOAD is TRUE)
PV INT programmed maximum value
QU BOO overflow: TRUE when CV = PV
QD BOO underflow: TRUE when CV = 0
CV INT counter result

Warning: The CTUD block does not detect the rising or falling edges of the counting inputs (CU
and CD). It must be associated with an "R_TRIG" or "F_TRIG" block to create a pulse counter.

Description:
Count (integer) from 0 up to a given value 1 by 1
or from a given value down to 0 1 by 1

(* FBD program using "CTUD" block *)

CTUD
CU

CD

RESET

LOAD

PV

QU

QD

CV

add_elt

sub_elt
reset_cmd
load_cmd

100

full
empty
nb_elt

r_trig
CLK Q

r_trig
CLK Q

(* ST Equivalence: We suppose R_TRIG1 and R_TRIG2 are two instances of R_TRIG block and
CTUD1 is an instance of CTUD block*)
CTUD1(R_TRIG1(add_elt), R_TRIG2(sub_elt), reset_cmd, load_cmd,100);
full := CTUD1.QU;
empty := CTUD1.QD;
nb_elt := CTUD1.CV;

(* IL Equivalence: *)
LD add_elt

ST R_TRIG1.clk
CAL R_TRIG1
LD R_TRIG1.Q
ST CTUD1.cu
LD sub_elt
ST R_TRIG2.clk
CAL R_TRIG2
LD R_TRIG2.Q
ST CTUD1.cd
LD reset_cmd
ST CTUD1.reset
LD load_cmd
ST CTUD1.load
LD 100
ST CTUD1.pv
CAL CTUD1
LD CTUD1.QU
ST full
LD CTUD1.QD
ST empty
LD CTUD1.CV
ST nb_elt

TON

TON

IN

PT

Q

ET

Arguments: {XE "TON"} {XE "On-delay timing"}
IN BOO If Rising edge, starts increasing internal timer

If Falling Edge, stops and resets internal timer
PT TMR maximum programmed time
Q BOO If TRUE, programmed time is elapsed
ET TMR current elapsed time

Description:
Increase an internal timer up to a given value.

Timing diagram:

IN

Q

ET

PT

0

TOF

TOF

IN

PT

Q

ET

Arguments:
IN BOO If Falling edge, starts increasing internal timer

If Rising edge, stops and resets internal timer
PT TMR maximum programmed time
Q BOO If TRUE: total time is not elapsed
ET TMR current elapsed time

Description:
Increase an internal timer up to a given value.

Timing diagram:

IN

Q

ET

PT

0

TP

TP

IN

PT

Q

ET

Arguments:
IN BOO If Rising edge, starts increasing internal timer (if not already

increasing)
If FALSE and only if timer is elapsed, resets the internal
timer
Any change on IN during counting has no effect.

PT TMR maximum programmed time
Q BOO If TRUE: timer is counting
ET TMR current elapsed time

Description:
Increase an internal timer up to a given value.

Timing diagram:

IN

Q

ET

PT

0

CMP

CMP

VAL1

VAL2

LT

EQ

GT

Arguments:
VAL1 INT any signed integer analog value
VAL2 INT any signed integer analog value
LT BOO TRUE if val1 is Less Than val2
EQ BOO TRUE if val1 is Equal to val2
GT BOO TRUE if val1 is Greater Than val2

Description:
Compare two values: tell if they are equal, or if the first is less or greater than the second one.

(* FBD program using "CMP" block *)

level
max_level

pump_cmd

alarmmanual_mode

CMP

VAL1

VAL2

LT

EQ

GT

>=1

&

(* ST Equivalence: We suppose CMP1 is an instance of CMP block *)
CMP1(level, max_level);
pump_cmd := CMP1.LT OR CMP1.EQ;
alarm := CMP1.GT AND NOT(manual_mode);

(* IL Equivalence: *)
LD level
ST CMP1.val1
LD max_level
ST CMP1.val2
CAL CMP1
LD CMP1.LT
OR CMP1.EQ
ST pump_cmd
LD CMP1.GT
ANDN manual_mode
ST alarm

STACKINT

stackint
PUSH

POP

R1

IN

N

EMPTY

OFLO

OUT

Arguments:
PUSH BOO push command (on rising edge only)

add the IN value on the top of the stack
POP BOO pop command (on rising edge only)

delete in the stack the last value pushed (top of the stack)
R1 BOO resets the stack to its empty state
IN INT pushed value
N INT application defined stack size
EMPTY BOO TRUE if the stack is empty
OFLO BOO overflow: TRUE if the stack is full
OUT INT value at the top of the stack

Description:

Manage a stack of integer values.

The "STACKINT" function block includes a rising edge detection for both PUSH and POP
commands. The maximum size of the stack is 128. The application defined stack size N cannot
be less than 1 or greater than 128.

Note that OFLO value is valid only after a reset (R1 has been set to TRUE at least once and back
to FALSE).

(* FBD program using "STACKINT" block: error management *)

err_detect
acknoledge

manual_mode
err_code
max_err

stackint
PUSH

POP

R1

IN

N

EMPTY

OFLO

OUT

auto_mode

err_alarm
appli_alarm

last_error

&

(* ST Equivalence: We suppose STACKINT1 is an instance of STACKINT block *)
STACKINT1(err_detect, acknoledge, manual_mode, err_code, max_err);
appli_alarm := auto_mode AND NOT(STACKINT1.EMPTY);
err_alarm := STACKINT1.OFLO;
last_error := STACKINT1.OUT;

(* IL Equivalence: *)
LD err_detect
ST STACKINT1.push
LD acknoledge
ST STACKINT1.pop
LD manual_mode
ST STACKINT1.r1
LD err_code
ST STACKINT1.IN
LD max_err
ST STACKINT1.N
CAL STACKINT1
LD auto_mode
ANDN STACKINT1.empty
ST appli_alarm
LD STACKINT1.OFLO
ST err_alarm
LD STACKINT1.OUT
ST last_error

AVERAGE

average
RUN

XIN

N XOUT

Arguments:

RUN BOO TRUE=run / FALSE=reset
XIN REAL any real analog variable
N INT application defined number of samples
XOUT REAL running average of XIN value

Description:
Stores a value at each cycle and calculates the average value of all already stored values.
Only the N last values are stored.

The number of samples N cannot exceed 128.
If the "RUN" command is FALSE (reset mode), the output value is equal to the input value.
When the maximum N of stored values is reached, the first stored value is erased by the last one.

(* FBD program using "AVERAGE" block: *)

auto_mode
store_cmd

sensor_value
100 ave_value

&
average

RUN

XIN

N XOUT

(* ST Equivalence: AVERAGE1 instance of AVERAGE block *)
AVERAGE1((auto_mode & store_cmd), sensor_value, 100);
ave_value := AVERAGE1.XOUT;

(* IL Equivalence: *)
LD auto_mode
AND store_cmd
ST AVERAGE1.run
LD sensor_value
ST AVERAGE1.xin
LD 100
ST AVERAGE1.N
CAL AVERAGE1
LD AVERAGE1.XOUT
ST ave_value

HYSTER

hyster
XIN1

XIN2

EPS Q

Arguments:
XIN1 REAL any real analog value
XIN2 REAL to test if XIN1 has overpassed XIN2+EPS
EPS REAL hysteresis value (must be greater than zero)
Q BOO TRUE if XIN1 has overpassed XIN2+EPS and is not yet

below XIN2-EPS

Description:
Hysteresis on a real value for a high limit.

Example of timing diagram:

Q

XIN1

XIN2
XIN2+EPS

XIN2-EPS

LIM_ALRM

lim_alrm
H

X

L

EPS

QH

Q

QL

Arguments:
H REAL high limit value
X REAL input: any real analog value
L REAL low limit value
EPS REAL hysteresis value (must be greater than zero)
QH BOO "high" alarm: TRUE if X above high limit H
Q BOO alarm output: TRUE if X out of limits
QL BOO "low" alarm: TRUE if X below low limit L

Description:
Hysteresis on a real value for high and low limits.

An hysteresis is applied on high and low limits. The hysteresis delta used for either high or low
limit is one half of the EPS parameter. Below is an example of timing diagram:

X
H - EPS

H

Q

L
L + EPS

QL

QH

INTEGRAL

integral
RUN

R1

XIN

X0

CYCLE

Q

XOUT

Arguments:
RUN BOO mode: TRUE=integrate / FALSE=hold
R1 BOO overriding reset
XIN REAL input: any real analog value
X0 REAL initial value
CYCLE TMR sampling period
Q BOO Not R1
XOUT REAL integrated output

Description:
Integration of a real value.

If the "CYCLE" parameter value is less than the cycle timing of the ISaGRAF application, the
sampling period is the cycle timing of the application.

(* FBD program using "INTEGRAL" block: *)

manual_mode

sensor_value
init_value
t#100ms controlled_value

integral
RUN

R1

XIN

X0

CYCLE

Q

XOUT

(* ST Equivalence: INTEGRAL1 instance of INTEGRAL block *)
INTEGRAL1(manual_mode, NOT(manual_mode), sensor_value, init_value, t#100ms);
controlled_value := INTEGRAL1.XOUT;

(* IL Equivalence: *)
LD manual_mode
ST INTEGRAL1.run
STN INTEGRAL1.R1
LD sensor_value
ST INTEGRAL1.XIN
LD init_value
ST INTEGRAL1.X0
LD t#100ms
ST INTEGRAL1.CYCLE
CAL INTEGRAL1
LD INTEGRAL1.XOUT
ST controlled_value

DERIVATE

derivate
RUN

XIN

CYCLE XOUT

Arguments:
RUN BOO mode: TRUE=normal / FALSE=reset
XIN REAL input: any real analog value
CYCLE TMR sampling period
XOUT REAL differentiated output

Description:
Differentiation of a real value.

If the "CYCLE" parameter value is less than the cycle timing of the ISaGRAF application, the
sampling period is the cycle timing of the application.

(* FBD program using "DERIVATE" block: *)

manual_mode
sensor_value

t#100ms derivated_value

derivate
RUN

XIN

CYCLE XOUT

(* ST Equivalence: DERIVATE1 instance of DERIVATE block *)
DERIVATE1(manual_mode, sensor_value, t#100ms);
derivated_value := DERIVATE1.XOUT;

(* IL Equivalence: *)
LD manual_mode
ST DERIVATE1.run
LD sensor_value
ST DERIVATE1.XIN
LD t#100ms
ST DERIVATE1.CYCLE
CAL DERIVATE1
LD DERIVATE1.XOUT
ST derivated_value

BLINK

blink
RUN

CYCLE Q

Arguments:
RUN BOO mode: TRUE=blinking / FALSE=reset the output to false
CYCLE TMR blinking period
Q BOO output blinking signal

Description:
Generates a blinking signal.

Timing diagram:

RUN

CYCLE

Q

SIG_GEN

sig_gen

RUN

PERIOD

MAXIMUM

PULSE

UP

END

SINE

Arguments:
RUN BOO mode: TRUE=running / FALSE=reset to false
PERIOD TMR duration of one sample
MAXIMUM INT maximum counting value
PULSE BOO inverted after each sample
UP INT up-counter, increased on each sample
END BOO TRUE when up-counting ends
SINE REAL sine signal (period = counting duration)

Description:
Generates various signal: blink on a boolean, a integer counter-up, and real sine wave.

When counting reaches maximum value, it restarts from 0 (zero). So END keeps the TRUE value
only during 1 PERIOD.

Timing diagram:

SINE

END

UP

PULSE

RUN

MAXIMUM

PERIOD

B.9.3 Standard functions

These are standard functions supported by the ISaGRAF system. Such functions are pre-defined
and do not have to be declared in the library.

Math ... ABS Absolute value
EXPT, POW Exponent, Power calculation
LOG Logarithm
SQRT Square root
TRUNC Truncate decimal part

Trigonometric ACOS, ASIN, Arc cosine, Arc sine,
ATAN Arc tangent
COS, SIN, Cosine, Sine,
TAN Tangent

Register control ROL, ROR Rotate Left, Rotate Right
SHL, SHR Shift Left, Shift Right

Data manipulation....................... MIN, MAX, Minimum, Maximum,
LIMIT Limit
MOD Modulo
MUX4, MUX8 Multiplexer (4 or 8 entries),
SEL Binary selector
ODD Odd parity
RAND Random value

Data conversion.......................... ASCII Character à ASCII code
CHAR ASCII code à Character

String management MLEN Get string length
DELETE Delete sub-string,
INSERT Insert string
FIND, Find sub-string,
REPLACE Replace sub-string
LEFT, MID Extract left, middle
RIGHT or right of a string

DAY_TIME Time of day
Array manipulation...................... ARCREATE Create array of integer values

ARREAD Read /
ARWRITE Write array element

Binary file management F_ROPEN Open a binary file in Read mode
F_WOPEN Open a binary file in Write mode
F_CLOSE Close a binary file
F_EOF Test the end of a binary file
FA_READ Read an analog value in a binary file
FA_WRITE Write an analog value to a binary file
FM_READ Read a message string in a binary file
FM_WRITE Write a message string to a binary file

ABS

abs

IN Q

Arguments:
IN REAL any signed real analog value
Q REAL absolute value (always positive)

Description:
Gives the absolute (positive) value of a real value.

(* FBD program using "ABS" block *)

delta
range over

abs
IN Q

>
IN1

IN2 Q

(* ST Equivalence: *)
over := (ABS (delta) > range);

(* IL Equivalence: *)
LD delta
ABS
GT range
ST over

EXPT

expt

IN

EXP Q

Arguments:

IN REAL any signed real analog value
EXP INT integer analog exponent
Q REAL (IN EXP)

Description:
Gives the real result of the operation: (base exponent) 'base' being the first argument and
'exponent' the second one.

(* FBD program using "EXPT" block *)

2.0
range

expt
IN

EXP Q tb_size
Ana

IN Q

(* ST Equivalence: *)
tb_size := ANA (EXPT (2.0, range));

(* IL Equivalence: *)
LD 2.0
EXPT range
ANA
ST tb_size

LOG

log

IN Q

Arguments:
IN REAL must be greater than zero
Q REAL logarithm (base 10) of the input value

Description:
Calculates the logarithm (base 10) of a real value.

(* FBD program using "LOG" block *)

xval xpos

xlog

abs
IN Q

log
IN Q

(* ST Equivalence: *)
xpos := ABS (xval);
xlog := LOG (xpos);

(* IL Equivalence: *)
LD xval
ABS
ST xpos

LOG
ST xlog

POW

pow

IN

EXP Q

Arguments:
IN REAL real analog number to be raised
EXP REAL power (exponent)
Q REAL (IN EXP)

1.0 if IN is not 0.0 and EXP is 0.0
0.0 if IN is 0.0 and EXP is negative
0.0 if both IN and EXP are 0.0
0.0 if IN is negative and Y does not correspond to an integer

Description:
Gives the real result of the operation: (base exponent) 'base' being the first argument and
'exponent' the second one. The exponent is a real value.

(* FBD program using "POW" block *)

xval
power result

pow
IN

EXP Q

(* ST Equivalence: *)
result := POW (xval, power);

(* IL Equivalence: *)
LD xval
POW power
ST result

SQRT

sqrt

IN Q

Arguments:
IN REAL must be greater than or equal to zero
Q REAL square root of the input value

Description:

Calculates the square root of a real value.

(* FBD program using "SQRT" block *)

xval xpos

xroot

abs
IN Q

sqrt
IN Q

(* ST Equivalence: *)
xpos := ABS (xval);
xroot := SQRT (xpos);

(* IL Equivalence: *)
LD xval
ABS
ST xpos
SQRT
ST xrout

TRUNC

trunc

IN Q

Arguments:
IN REAL any REAL analog value
Q REAL if IN>0, biggest integer less or equal to the input

if IN<0, least integer greater or equal to the input

Description:
Truncates a real value to have just the integer part

(* FBD program using "TRUNC" block *)

2.67

-2.0891

trunc
IN Q

trunc
IN Q

+

result

(* ST Equivalence: *)
result := TRUNC (+2.67) + TRUNC (-2.0891);
(* means: result := 2.0 + (-2.0) := 0.0; *)

(* IL Equivalence: *)
LD 2.67
TRUNC
ST temporary (* temporary result of first TRUNC *)
LD -2.0891

TRUNC
ADD temporary
ST result

ACOS

acos

IN Q

Arguments:
IN REAL must be in set [-1.0 .. +1.0]
Q REAL arc-cosine of the input value (in set [0.0 .. PI])

= 0.0 for invalid input

Description:
Calculates the Arc cosine of a real value.

(* FBD program using "COS" and "ACOS" blocks *)

angle
cos

IN Q cosine

acos
IN Q result

(* ST Equivalence: *)
cosine := COS (angle);
result := ACOS (cosine); (* result is equal to angle *)

(* IL Equivalence: *)
LD angle
COS
ST cosine
ACOS
ST result

ASIN

asin

IN Q

Arguments: {XE "ASIN"} {XE "Arc sine"}
IN REAL must be in set [-1.0 .. +1.0]
Q REAL arc-sine of the input value (in set [-PI/2 .. +PI/2])

= 0.0 for invalid input

Description:
Calculates the Arc sine of a real value.

(* FBD program using "SIN" and "ASIN" blocks *)

angle
sin

IN Q sine

asin
IN Q result

(* ST Equivalence: *)
sine := SIN (angle);
result := ASIN (sine); (* result is equal to angle *)

(* IL Equivalence: *)
LD angle
SIN
ST sine
ASIN
ST result

ATAN

atan

IN Q

Arguments:
IN REAL any real analog value
Q REAL arc-tangent of the input value (in set [-PI/2 .. +PI/2])

= 0.0 for invalid input

Description:
Calculates the Arc tangent of a real value.

(* FBD program using "TAN" and "ATAN" block *)

angle
tan

IN Q tangent

atan
IN Q result

(* ST Equivalence: *)
tangent := TAN (angle);
result := ATAN (tangent); (* result is equal to angle*)

(* IL Equivalence: *)
LD angle
TAN
ST tangent
ATAN
ST result

COS

cos

IN Q

Arguments:
IN REAL any REAL analog value
Q REAL cosine of the input value (in set [-1.0 .. +1.0])

Description:
Calculates the Cosine of a real value.

(* FBD program using "COS" and "ACOS" blocks *)

angle
cos

IN Q cosine

acos
IN Q result

(* ST Equivalence: *)
cosine := COS (angle);
result := ACOS (cosine); (* result is equal to angle *)

(* IL Equivalence: *)
LD angle
COS
ST cosine
ACOS
ST result

SIN

sin

IN Q

Arguments:
IN REAL any REAL analog value
Q REAL sine of the input value (in set [-1.0 .. +1.0])

Description:
Calculates the Sine of a real value.

(* FBD program using "SIN" and "ASIN" blocks *)

angle
sin

IN Q sine

asin
IN Q result

(* ST Equivalence: *)
sine := SIN (angle);
result := ASIN (sine); (* result is equal to angle *)

(* IL Equivalence: *)
LD angle
SIN
ST sine
ASIN
ST result

TAN

tan

IN Q

Arguments:
IN REAL cannot be equal to PI/2 modulo PI
Q REAL tangent of the input value

= 1E+38 for invalid input

Description:
Calculates the Tangent of a real value.

(* FBD program using "TAN" and "ATAN" block *)

angle
tan

IN Q tangent

atan
IN Q result

(* ST Equivalence: *)
tangent := TAN (angle);
result := ATAN (tangent); (* result is equal to angle*)

(* IL Equivalence: *)
LD angle
TAN
ST tangent
ATAN
ST result

ROL

rol

IN

NbR Q

Arguments:
IN INT any integer analog value
NbR INT number of 1 bit rotations (in set [1..31])
Q INT left rotated value

no effect if NbR <= 0

Description:
Make the bits of an integer rotate to the left. Rotation is made on 32 bits:

31 0

(* FBD program using "ROL" block *)

register
1 result

rol
IN

NbR Q

(* ST Equivalence: *)
result := ROL (register, 1);
(* register = 2#0100_1101_0011_0101*)
(* result = 2#1001_1010_0110_1010*)

(* IL Equivalence: *)
LD register
ROL 1
ST result

ROR

ror
IN

NbR Q

Arguments:
IN INT any integer analog value
NbR INT number of 1 bit rotations (in set [1..31])
Q INT right rotated value

no effect if NbR <= 0

Description:
Make the bits of an integer rotate to the right. Rotation is made on 32 bits:

31 0

(* FBD program using "ROR" block *)

register
1 result

ror
IN

NbR Q

(* ST Equivalence: *)
result := ROR (register, 1);
(* register = 2#0100_1101_0011_0101 *)
(* result = 2#1010_0110_1001_1010 *)

(* IL Equivalence: *)
LD register
ROR 1
ST result

SHL

shl

IN

NbS Q

Arguments:
IN INT any integer analog value
NbS INT number of 1 bit shifts (in set [1..31])
Q INT left shifted value

no effect if NbS <= 0
0 is used to replace lowest bit

Description:
Make the bits of an integer shift to the left. Shift is made on 32 bits:

0

(* FBD program using "SHL" block *)

register
1 result

shl
IN

NbS Q

(* ST Equivalence: *)
result := SHL (register,1);

(* register = 2#0100_1101_0011_0101 *)
(* result = 2#1001_1010_0110_1010 *)

(* IL Equivalence: *)
LD register
SHL 1
ST result

SHR

shr

IN

NbS Q

Arguments:
IN INT any integer analog value
NbS INT number of 1 bit shifts (in set [1..31])
Q INT right shifted value

no effect if NbS <= 0
highest bit is copied at each shift

Description:
Make the bits of an integer shift to the right. Shift is made on 32 bits:

031

(* FBD program using "SHR" block *)

register
1 result

shr
IN

NbS Q

(* ST Equivalence: *)
result := SHR (register,1);
(* register = 2#1100_1101_0011_0101 *)
(* result = 2#1110_0110_1001_1010 *)

(* IL Equivalence: *)
LD register
SHR 1
ST result

MIN

min

IN1

IN2 Q

Arguments:
IN1 INT any signed integer analog value
IN2 INT (cannot be REAL)
Q INT minimum of both input values

Description:
Gives the minimum of two integer values.

(* FBD program using "MIN" and "MAX" block *)

max_value

value

min_value

min
IN1

IN2 Q

max

IN1

IN2 Q new_value

(* ST Equivalence: *)
new_value := MAX (MIN (max_value, value), min_value);
(* bounds the value to the [min_value..max_value] set *)

(* IL Equivalence: *)
LD max_value
MIN value
MAX min_value
ST new_value

MAX

max

IN1

IN2 Q

Arguments:
IN1 INT any signed integer analog value
IN2 INT (cannot be REAL)
Q INT maximum of both input values

Description:
Gives the maximum of two integer values.

(* FBD program using "MIN" and "MAX" block *)

max_value

value
min_value

min

IN1

IN2 Q

max

IN1

IN2 Q new_value

(* ST Equivalence: *)
new_value := MAX (MIN (max_value, value), min_value);
(* bounds the value to the [min_value..max_value] set *)

(* IL Equivalence: *)
LD max_value
MIN value
MAX min_value
ST new_value

LIMIT

limit
MIN

IN

MAX Q

Arguments:
MIN INT minimum allowed value
IN INT any signed integer analog value
MAX INT maximum allowed value
Q INT input value bounded to allowed range

Description:
Limits an integer value into a given interval. Whether it keeps its value if it is between
minimum and maximum, or it is changed to maximum if it is above, or it is changed to
minimum if it is below.

(* FBD program using "LIMIT" block *)

min_value
value

max_value new_value

limit
MIN

IN

MAX Q

(* ST Equivalence: *)
new_value := LIMIT (min_value, value, max_value);
(* bounds the value to the [min_value..max_value] set *)

(* IL Equivalence: *)
LD min_value
LIMIT value, max_value
ST new_value

MOD

mod

IN

Base Q

Arguments:
IN INT any signed INTEGER analog value
Base INT must be greater than zero
Q INT modulo calculation (input MOD base)

returns -1 if Base <= 0

Description:
Calculates the modulo of an integer value.

(* FBD program using "MOD" block *)

value
divider division_result

rest_of_division

/
IN1

IN2 Q

mod
IN

Base Q

(* ST Equivalence: *)
division_result := (value / divider); (* integer division *)
rest_of_division := MOD (value, divider); (* rest of the division *)

(* IL Equivalence: *)
LD value
DIV divider
ST division_result
LD value
MOD divider
ST rest_of_division

MUX4

mux4
SEL

IN1

IN2

IN3

IN4 Q

Arguments:
SEL INT selector integer value (must be in set [0..3])
IN1..IN4 INT any integer analog values
Q INT = value1 if SEL = 0

= value2 if SEL = 1

= value3 if SEL = 2
= value4 if SEL = 3
= 0 for all other values of the selector

Description:
Multiplexer with 4 entries: selects a value between 4 integer values.

(* FBD program using "MUX4" block *)

choice
1

10
100

1000

mux4
SEL

IN1

IN2

IN3

IN4 Q range

(* ST Equivalence: *)
range := MUX4 (choice, 1, 10, 100, 1000);
(* select from 4 predefined ranges, for example, if choice is 1, range will be 10 *)

(* IL Equivalence: *)
LD choice
MUX4 1,10,100,1000
ST range

MUX8

mux8
SEL

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8 Q

Arguments:
SEL INT selector integer value (must be in set [0..7])
IN1..IN8 INT any integer analog values
Q INT = value1 if selector = 0

= value2 if selector = 1
...
= value8 if selector = 7
= 0 for all other values of the selector

Description:

Multiplexer with 8 entries: selects a value between 8 integer values.

(* FBD program using "MUX8" block *)

choice
1
5

10
50

100
500

1000
5000

mux8
SEL

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8 Q range

(* ST Equivalence: *)
range := MUX8 (choice, 1, 5, 10, 50, 100, 500, 1000, 5000);
(* select from 8 predefined ranges, for example, if choice is 3, range will be 50 *)

(* IL Equivalence: *)
LD choice
MUX8 1,5,10,50,100,500,1000,5000
ST range

ODD

odd

IN Q

Arguments:
IN INT any signed integer analog value
Q BOO TRUE if input value is odd

FALSE if input value is even

Description:
Tests the parity of an integer: result is odd or even.

(* FBD program using "ODD" block *)

value

1

odd
IN Q RETURN

+

value

(* ST Equivalence: *)
If Not (ODD (value)) Then Return; End_if;
value := value + 1;
(* makes value always even *)

(* IL Equivalence: *)

LD value
ODD
RETNC
LD value
ADD 1
ST value

RAND

rand

base Q

Arguments:
base INT defines the allowed set of number
Q INT random value in set [0..base-1]

Description:
Gives a random integer value in a given range.

(* FBD program using "RAND" block *)

4
1
4
8

16

rand
base Q

mux4
SEL

IN1

IN2

IN3

IN4 Q selected

(* ST Equivalence: *)
selected := MUX4 (RAND (4), 1, 4, 8, 16);
(*
random selection of 1 of 4 pre-defined values
the value issued of RAND call is in set [0..3],
so 'selected' issued from MUX4, will get 'randomly' the value
1 if 0 is issued from RAND,
or 4 if 1 is issued from RAND,
or 8 if 2 is issued from RAND,
or 16 if 3 is issued from RAND,
*)

(* IL Equivalence: *)
LD 4
RAND
MUX4 1,4,8,16
ST selected

SEL

sel
SEL

IN1

IN2 Q

Arguments:
SEL BOO indicates the chosen value
IN1, IN2 INT any integer analog values
Q INT = value1 if SEL is FALSE

= value2 if SEL is TRUE

Description:
Binary selector: selects a value between 2 integer values.

(* FBD program using "SEL" block *)

AutoMode
ManuCmd
InpCmd

sel
SEL

IN1

IN2 Q ProCmd

(* ST Equivalence: *)
ProCmd := SEL (AutoMode, ManuCmd, InpCmd);
(* process command selection *)

(* IL Equivalence: *)
LD AutoMode
SEL ManuCmd,InpCmd
ST ProCmd

ASCII

ascii

IN

Pos Code

Arguments:
IN MSG any non-empty string
Pos INT position of the selected character

in set [1.. len] (len is the length of the IN message)
Code INT code of the selected character

(in set [0 .. 255])
returns 0 is Pos is out of the string

Description:
Gives the ASCII code of one character in a message string.

(* FBD program using "ASCII" block *)

message
1

ascii
IN

Pos Code FirstChr

(* ST Equivalence: *)
FirstChr := ASCII (message, 1);
(* FirstChr is the Ascii code of the first character of the string *)

(* IL Equivalence: *)
LD message
ASCII 1
ST FirstChr

CHAR

char

Code Q

Arguments:
Code INT code in set [0 .. 255]
Q MSG one character string

the character has the ASCII code given in input Code
(ASCII code is used modulo 256)

Description:
Gives a one character message string from a given ASCII code.

(* FBD program using "CHAR" block *)

value
48

char
Code Q

+

Display

(* ST Equivalence: *)
Display := CHAR (value + 48);
(* value is in set [0..9] *)
(* 48 is the ascii code of '0' *)
(* result is one character string from '0' to '9' *)

(* IL Equivalence: *)
LD value
ADD 48
CHAR
ST Display

DELETE

delete

IN

NbC

Pos Q

Arguments:
IN MSG any non-empty message
NbC INT number of characters to be deleted
Pos INT position of the first deleted character

(first character of the string has position 1)
Q MSG modified string

empty string if Pos < 1
initial string if Pos > IN string length
initial string if NbC <= 0

Description:
Deletes a part of a message string.

(* FBD program using "DELETE" block *)

'ABCD'
'EFGH'

CAT

delete
IN

NbC

Pos Q

complete_string

sub_string
4
3

(* ST Equivalence: *)
complete_string := 'ABCD' + 'EFGH'; (* complete_string is 'ABCDEFGH' *)
sub_string := DELETE (complete_string, 4, 3); (* sub_string is 'ABGH' *)

(* IL Equivalence: *)
LD 'ABCD'
ADD 'EFGH'
ST complete_string
DELETE 4,3
ST sub_string

FIND

find

In

Pat Pos

Arguments:
In MSG any message string

Pat MSG any non-empty string (Pattern)
Pos INT = 0 if sub string Pat not found

= position of the first character of the first occurrence of the
sub-string Pat
(first position is 1)
this function is case sensitive

Description:
Finds a sub-string in a message string. Gives the position in the string of the sub-string.

(* FBD program using "FIND" block *)

'ABCD'
'EFGH'

CAT

find
In

Pat Pos

complete_string

'CDEF' found

(* ST Equivalence: *)
complete_string := 'ABCD' + 'EFGH'; (* complete_string is 'ABCDEFGH' *)
found := FIND (complete_string, 'CDEF'); (* found is 3 *)

(* IL Equivalence: *)
LD 'ABCD'
ADD 'EFGH'
ST complete_string
FIND 'CDEF'
ST found

INSERT

insert
IN

Str

Pos Q

Arguments:
IN MSG initial string
Str MSG string to be inserted
Pos INT position of the insertion

the insertion is done before the position
(first valid position is 1)

Q MSG modified string
empty string if Pos <= 0
concatenation of both strings if Pos is greater than the
length of the IN string

Description:

Inserts a sub-string in a message string at a given position.

(* FBD program using "INSERT" block *)

'Mr JONES'
'Franck '

4

insert
IN

Str

Pos Q MyName

(* ST Equivalence: *)
MyName := INSERT ('Mr JONES', 'Frank ', 4);
(* MyName is 'Mr Frank JONES' *)

(* IL Equivalence: *)
LD 'Mr JONES'
INSERT 'Frank ',4
ST MyName

LEFT

left

IN

NbC Q

Arguments:
IN MSG any non-empty string
NbC INT Number of characters to be extracted

cannot be greater than the length of the IN string
Q MSG left part of the IN string (its length = NbC)

empty string if NbC <= 0
complete IN string if NbC >= IN string length

Description:
Extracts the left part of a message string. The number of characters to be extracted is given.

(* FBD program using "LEFT" and "RIGHT" blocks *)

'12345678'
4

right
IN

NbC Q

left
IN

NbC Q

CAT

complete_string

(* ST Equivalence: *)
complete_string := RIGHT ('12345678', 4) + LEFT ('12345678', 4);
(* complete_string is '56781234'
the value issued from RIGHT call is '5678'
the value issued from LEFT call is '1234'
*)

(* IL Equivalence: First done is call to LEFT *)
LD '12345678'
LEFT 4
ST sub_string (* intermediate result *)
LD '12345678'
RIGHT 4
ADD sub_string
ST complete_string

MID

mid
IN

NbC

Pos Q

Arguments:
IN MSG any non-empty string
NbC INT number of characters to be extracted

cannot be greater than the length of the IN string
Pos INT position of the sub-string

the sub-string first character will be the one pointed to by
Pos
(first valid position is 1)

Q MSG middle part of the string (its length = NbC)
empty string if parameters are not valid

Description:
Extracts a part of a message string. The number of characters to be extracted and the
position of the first character are given.

(* FBD program using "MID" block *)

'abcdefgh'
2
4

mid
IN

NbC

Pos Q sub_string

(* ST Equivalence: *)
sub_string := MID ('abcdefgh', 2, 4);
(* sub_string is 'de' *)

(* IL Equivalence: *)
LD 'abcdefgh'
MID 2,4
ST sub_string

MLEN

mlen

IN NbC

Arguments:
IN MSG any string message
NbC INT number of characters in the IN string

Description:
Calculates the length of a message string.

(* FBD program using "MLEN" block *)

complete_string
mlen

IN NbC nbchar

<
IN1

IN2 Q3

left
IN

NbC Q

RETURN

prefix

(* ST Equivalence: *)
nbchar := MLEN (complete_string);
If (nbchar < 3) Then Return; End_if;
prefix := LEFT (complete_string, 3);
(* this program extracts the 3 characters on the left of the string and put the result in the prefix
message variable
nothing is done if the string length is less than 3 characters *)

(* IL Equivalence: *)
LD complete_string
MLEN
ST nbchar
LT 3
RETC
LD complete_string
LEFT 3
ST prefix

REPLACE

replace
IN

Str

NbC

Pos Q

Arguments:
IN MSG any string
Str MSG string to be inserted (to replace NbC chars)
NbC INT number of characters to be deleted
Pos INT position of the first modified character

(first valid position is 1)
Q MSG modified string:

- NbC characters are deleted at position Pos
- then substring Str is inserted at this position
returns empty string if Pos <= 0
returns strings concatenation (IN+Str) if Pos is greater than
the length of the IN string
returns initial string IN if NbC <= 0

Description:
Replaces a part of a message string by a new set of characters.

(* FBD program using "REPLACE" block *)

'Mr X JONES'
'Frank'

1

replace
IN

Str

NbC

Pos Q MyName4

(* ST Equivalence: *)
MyName := REPLACE ('Mr X JONES, 'Frank', 1, 4);
(* MyName is 'Mr Frank JONES' *)

(* IL Equivalence: *)
LD 'Mr X JONES'
REPLACE 'Frank',1,4
ST MyName

RIGHT

right
IN

NbC Q

Arguments:

IN MSG any non-empty string
NbC INT cannot be greater than the length of the IN string
Q MSG right part of the string (length = NbC)

empty string if NbC <= 0
complete string if NbC >= string length

Description:
Extracts the right part of a message string. The number of characters to be extracted is given.

(* FBD program using "LEFT" and "RIGHT" blocks *)

'12345678'
4

right
IN

NbC Q

left
IN

NbC Q

CAT

complete_string

(* ST Equivalence: *)
complete_string := RIGHT ('12345678', 4) + LEFT ('12345678', 4);
(* complete_string is '56781234'
the value issued from RIGHT call is '5678'
the value issued from LEFT call is '1234'
*)

(* IL Equivalence: First done is call to LEFT *)
LD '12345678'
LEFT 4
ST sub_string (* intermediate result *)
LD '12345678'
RIGHT 4
ADD sub_string
ST complete_string

DAY_TIME

day_time

SEL Q

Arguments:
SEL INT output selection

0= get current date
1= get current time
2= get day of week

Q MSG time/date expressed on a character string
'YYYY/MM/DD' if SEL = 0
'HH:MM:SS' if SEL = 1
day name if SEL = 2 (ex: 'Monday')

Description:
Gives date or time of the day as a message string.

(* FBD program using "DAY_TIME" block *)

0

' ; '

1
Display

day_time
SEL Q

day_time
SEL Q

CAT

(* ST Equivalence: *)
Display := Day_Time (0) + ' ; ' + Day_Time (1);
(* Display text format is: 'YYYY/MM/DD ; HH:MM:SS' *)

(* IL Equivalence: First done is call to day_time(1) *)
LD 1
DAY_TIME
ST hour_str (* intermediate result *)
LD 0
DAY_TIME
ADD ' ; '
ADD hour_str
ST Display

ARCREATE

arcreate

ID

Size ok

Arguments:
ID INT identifier of the array (must be in set [0..15])
Size INT number of elements in the array
ok INT execution status :

1 = if array has been successfully created
2 = invalid array identifier or array already created
3 = invalid size
4 = not enough memory

Description:
Creation of an array of integers.

Warning: There are at most 16 arrays in an application. Arrays contain integer analog values. As
dynamic memory allocation is performed, this function may cause a system error if the array size
is too close to the size of the available memory.

(* FBD program creating an array of integers *)

ident
16

arcreate
ID

Size ok

<>
IN1

IN2 Q

1
array_error

(* ST Equivalence: *)
array_error := (ARCREATE (ident, 16) <> 1));

(* IL Equivalence: *)
LD ident
ARCREATE 16
NE 1
ST array_error

ARREAD

arread

ID

Pos Q

Arguments:
ID INT identifier of the array (must be in set [0..15])
Pos INT position of the element in the array

must be in set [0 .. size-1]
value INT value of the element read

0 if the arguments are not valid

Description:
Reads an element in an array of integers.

(* FBD program using array management blocks *)
array_error

RETURN

ident
index

arread
ID

Pos Q read_value

(* ST Equivalence: *)
If (array_error) Then Return; End_if;
read_value := ARREAD (ident, index);
(* array_error comes from the ARCREATE call *)

(* IL Equivalence: *)
LD array_error
RETC
LD ident

ARREAD index
ST read_value

ARWRITE

arwrite
ID

Pos

IN ok

Arguments:
ID INT identifier of the array (must be in set [0..15])
Pos INT position of the element in the array

must be in set [0 .. size-1]
IN INT new value for the element
ok INT execution status

1 = writing has succeeded
2 = invalid array identifier
3 = invalid index

Description:
Stores (writes) a value in an array of integers.

(* FBD program using array management blocks *)
array_error

RETURN

ident
index

arwrite
ID

Pos

IN ok write_statusvalue

(* ST Equivalence: *)
If (array_error) Then Return; End_if;
write_status := ARWRITE (Ident, Index, value);
(* array_error comes from the ARCREATE call *)

(* IL Equivalence: *)
LD array_error
RETC
LD ident
ARWRITE index,value
ST write_status

F_ROPEN

F_ROPEN
Path ID

Arguments:
Path MSG file name

It may include the access path to the file using the \ or /
symbol to specify a directory. To ease application portability,
/ or \ is equivalent.

ID INT file number
0 if an error occurs: file does not exists.

Description:
Opens a binary file in read mode. To be used with FX_READ and F_CLOSE.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

'c:\data\data.bin'
F_ROPEN

Path ID file_id

file_id
0

=
IN1

IN2 Q error

(* ST Equivalence: *)
file_id := F_ROPEN('c:\data \data.bin');
error := (file_id=0);

(* IL Equivalence: *)
LD 'c:\data\data.bin'
F_ROPEN
ST file_id
EQ 0
ST error

F_WOPEN

F_WOPEN
Path ID

Arguments:
Path MSG file name

It may include the access path to the file using the \ or /
symbol to specify a directory. To ease application portability,
/ or \ is equivalent.

ID INT file number
0 if an error occurs. If the file already exists, it is overwritten.

Description:
Opens a binary file in write mode. To be used with FX_WRITE and F_CLOSE.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

'c:\data\data.bin'
F_WOPEN

Path ID file_id

file_id
0

=
IN1

IN2 Q error

(* ST Equivalence: *)
file_id := F_WOPEN('c:\data \data.bin');
error := (file_id=0);

(* IL Equivalence: *)
LD 'c:\data\data.bin'
F_WOPEN
ST file_id
EQ 0
ST error

F_CLOSE

F_CLOSE
ID ok

Arguments:
ID INT file number: returned by F_ROPEN or F_WOPEN.
ok BOO return status

TRUE if file close is OK
FALSE if an error occurred

Description:
Closes a binary file open with functions F_ROPEN or F_WOPEN.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

'data.bin'
F_ROPEN

Path ID file_id

F_CLOSE
ID okfile_id ok

(* ST Equivalence: *)
file_id := F_ROPEN('data.bin');
ok := F_CLOSE(file_id);

(* IL Equivalence: *)
LD 'data.bin'
F_ROPEN
ST file_id
F_CLOSE (* file_id is already in the current IL result *)

ST ok

F_EOF

F_EOF
ID ok

Arguments:
ID INT file number: returned by F_ROPEN or F_WOPEN.
ok BOO end of file indicator

TRUE if end of file has been reached at the last read or
write procedure call.
With FM_READ, the last message read from a file may not
be correct, if the last character is not a string terminator.

Description:
Tests if end of file has been reached.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

'data.bin'
F_ROPEN

Path ID file_id

not_eof:

file_id
FA_READ

ID Q VAL

F_EOF
ID okfile_id not_eof

'last val = '

VAL
Msg

IN Q

CAT

message

F_CLOSE
ID okfile_id ok

(* ST Equivalence: *)
file_id := F_ROPEN('data.bin');
WHILE not(F_EOF(file_id))

VAL := FA_READ(file_id);
END_WHILE;
MESSAGE := 'last val = ' + msg(VAL);
ok := F_CLOSE(file_id);

(* IL Equivalence: *)
LD 'data.bin'
F_ROPEN
ST file_id
LD file_id

F_EOF
JMPC END_OF_FILE

NOT_EOF: LD file_id
FA_READ
ST VAL
LD file_id
F_EOF
JMPNC NOT_EOF (* if not eof, go on reading *)

END_OF_FILE: LD VAL
MSG
ST val_msg (* conversion of VAL into a message *)
LD 'last val = '
ADD val_msg
ST MESSAGE
LD file_id
F_CLOSE
ST ok

FA_READ

FA_READ
ID Q

Arguments:
ID INT file number: returned by F_ROPEN.
Q INT integer analog value read from file

Description:
Reads ANALOG variables from a binary file. To be used with F_ROPEN and F_CLOSE.
This procedure makes a sequential access to the file, from the previous position.
The first call after F_ROPEN reads the first 4 bytes of the file,
each call pushes the reading pointer.
To check if the end of file is reached, use F_EOF.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

'voltramp'
F_ROPEN

Path ID file_id

file_id
FA_READ

ID Q vstart

file_id
FA_READ

ID Q vend

file_id
FA_READ

ID Q vinc

file_id
FA_READ

ID Q delat_tim
Tmr

IN Q

F_CLOSE
ID okfile_id ok

(* ST Equivalence: *)
file_id := F_ROPEN('voltramp.bin');
vstart := FA_READ(file_id);
vend := FA_READ(file_id);
vinc := FA_READ(file_id);
delta_tim := tmr(FA_READ(file_id));
ok := F_CLOSE(file_id);

(* IL Equivalence: *)
LD 'voltramp.bin'
F_ROPEN
ST file_id
FA_READ (* read vstart *)
ST vstart
LD file_id
FA_READ (* read vend *)
ST vend
LD file_id
FA_READ (* read vinc *)
ST vinc
LD file_id
FA_READ (* read delta_tim *)
TMR (* conversion into a timer *)
ST delta_tim
LD file_id
F_CLOSE
ST ok

FA_WRITE

ID

IN ok

FA_WRITE

Arguments:
ID INT file number: returned by F_WOPEN.
IN INT integer analog value To be written in the file
OK BOO execution status: TRUE if ok

Description:
Writes ANALOG variables to a binary file.
This procedure makes a sequential access to the file, from the previous position.
The first call after F_WOPEN writes the first 4 bytes of the file,
each call pushes the writing pointer.
This function is not included in the ISaGRAF simulator.

(* FBD program *)

FA_WRITE

ID

IN ok

F_WOPEN

Path ID'data.bin' file_id

0 nb_written

file_id
vstart

nb_written

Ana
IN Q

nb_written

+

FA_WRITE

ID

IN ok

file_id
vend

nb_written

Ana
IN Q

nb_written

+

FA_WRITE

ID

IN ok

file_id
vinc

nb_written

Ana
IN Q

nb_written

+

FA_WRITE

ID

IN ok

file_id

delta_tim nb_written

Ana
IN Q

nb_written

+
Ana

IN Q

F_CLOSE

ID okfile_id ok

nb_written
4

=
IN1

IN2 Q RETURN

NO ERROR

ERR_FILE ERROR

(* ST Equivalence: *)
file_id := F_WOPEN('voltramp.bin');
nb_written := 0;

nb_written := nb_written + ana(FA_WRITE(file_id,vstart));
nb_written := nb_written + ana(FA_WRITE(file_id,vend));
nb_written := nb_written + ana(FA_WRITE(file_id,vinc));
nb_written := nb_written + ana(FA_WRITE(file_id,ana(delta_tim)));
ok := F_CLOSE(file_id);
IF (nb_written <> 4) THEN

ERROR := ERR_FILE;
END_IF;

(* IL Equivalence: *)
LD 'voltramp.bin'
F_ROPEN
ST file_id
LD 0
ST nb_written
LD file_id (* write vstart *)
FA_WRITE vstart
ANA
ADD nb_written
ST nb_written
LD file_id (* write vend *)
FA_WRITE vend
ANA
ADD nb_written
ST nb_written
LD file_id (* write vinc *)
FA_WRITE vinc
ANA
ADD nb_written
LD (* write delta_tim *)
ANA (* convert it to an integer *)
ST ana_delta_tim
LD file_id
FA_WRITE ana_delta_tim
ANA
ADD nb_written
ST nb_written
F_CLOSE
ST ok
LD nb_written
EQ 4
RETC (* return if equal 4 *)
LD ERR_FILE (* else error *)
ST ERROR

FM_READ

FM_READ

ID Q

Arguments:
ID INT file number: returned by F_ROPEN.
Q MSG message value read from file

Description:
Reads MESSAGE variables from a binary file.
To be used with F_ROPEN and F_CLOSE.
This procedure makes a sequential access to the file, from the previous position.
The first call after F_ROPEN reads the first string of the file,
each call pushes the reading pointer.
A string is a terminated by null (0), end of line ('\n') or return ('\r');
To check if the end of file is reached, use F_EOF.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

'voltramp'
F_ROPEN

Path ID file_id

file_id
FM_READ

ID Q status1

file_id
FM_READ

ID Q status2

file_id

F_CLOSE
ID okfile_id ok

F_EOF
ID ok CLOSE_FILE

file_id
FM_READ

ID Q unused_eof_mes

CLOSE_FILE:

ERR_FILE ERROR

(* ST Equivalence: *)
file_id := F_ROPEN('voltramp.bin');
status1 := FM_READ(file_id);
status2 := FM_READ(file_id);
IF (F_EOF(file_id)) THEN

ERROR := ERR_FILE;
unused_eof_mes := FM_READ(file_id);

END_IF;
ok := F_CLOSE(file_id);

(* IL Equivalence: *)
LD 'voltramp.bin'
F_ROPEN

ST file_id
FM_READ (* read status1 *)
ST status1
LD file_id
FM_READ (* read status2 *)
ST status2
LD file_id
F_EOF
JMPNC CLOSE_FILE (* if end of file jump not done *)
LD ERR_FILE
ST ERROR
LD file_id
FM_READ (* read unused_eof_mes *)
ST unused_eof_mes

CLOSE_FILE LD file_id
F_CLOSE
ST ok

FM_WRITE

FM_WRITE

ID

IN ok

Arguments:
ID INT file number: returned by F_WOPEN.
IN MSG message value to be written in the file
ok BOO execution status

TRUE if succeeded

Description:
Writes MESSAGE variables to a binary file.
To be used with F_WOPEN and F_CLOSE.
A message is written in the file as a null terminated string.
This procedure makes a sequential access to the file, from the previous position.
The first call after F_WOPEN writes the first string to the file,
each call pushes the writing pointer.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

FM_WRITE
ID

IN ok

F_WOPEN
Path ID'trace.txt' file_id

file_id
'First message' ok

F_CLOSE
ID okfile_id ok

FM_WRITE
ID

IN ok

file_id
'Last message' ok

(* ST Equivalence: *)
file_id := F_WOPEN('trace.txt');
ok := FM_WRITE(file_id,'First message');
ok := FM_WRITE(file_id,'Last message');
ok := F_CLOSE(file_id);

(* IL Equivalence: *)
LD 'trace.txt'
F_WOPEN
ST file_id
FM_WRITE'First message' (* write first msg *)
ST ok
LD file_id
FM_WRITE'Last message' (* write second msg *)
ST ok
LD file_id
F_CLOSE
ST ok

C. Target User's guide

C.1 Introduction

The ISaGRAF target is a real time software running an ISaGRAF application on your industrial
computer system or board according to the following well known scheme:

Inputs Scan

Outputs Update

Execution
of Begin Programs

Execution
of Sequential Programs

Execution
of End Programs

ISaGRAF
Target Cycle

The target cycle consists in scanning the physical inputs of the process to drive, processing
application data according to the ISaGRAF workbench1 application programs and then performing
physical outputs update.

− First part of this section explains how getting started with a specific system target. Respectively
DOS, OS-9, VxWorks and NT target. For each one you will find first how to run the ISaGRAF
target. Afterwards you will get information on specific features such as: target start up at power
up, error management, general behavior, ...

− Second part deals with user’s C functions, function blocks and conversion functions
implementation method to enhance the ISaGRAF target.

− Third part provides information on Modbus and the ISaGRAF implementation. It describes the
frames format of the different function codes.

− Fourth part gives some tools for managing power fail and target restart.

1 This manual assumes the user is familiar with the ISaGRAF workbench

C.2 Installation

The installation requires about 1 Mbyte of free space on your disk. The install.bat delivered with
the disk installs all needed files for a specified platform on your PC.

Example: a:\install a: c:\path
will install files from disk drive a: to c: on path directory.

The following directory architecture is used:

CMDS

LIB

DEFS

RELS

USER

ROOT

the ROOT directory contains some tools and readme files
the CMDS directory contains executable files
the DEFS directory contains header definition files
the LIB directory contains libraries
the RELS directory contains relocatable (object) files
the USER directory contains user’s ‘C’ procedures for C functions, function blocks and
conversion functions (source and header files)

Then just get started with the installed platform.

C.3 Getting started with ISaGRAF DOS target

C.3.1 Running ISaGRAF: ISA.EXE

In the MS-DOS implementation, the target runs as a single program: ISA.EXE.To get started you
can simply run the help command isa -? from CMDS directory
In such a system, operations can be critical. It is for instance recommended not to overload the
communication link to guarantee good performance.The target program does not prevent the
running of interrupt driven routines.

Communication link and configuration: -t Option
The ISaGRAF target uses a serial link for debugger communication. The name of the port is
specified with the -t option. As the communication interface is designed to be compatible with any
machine, ports COM1, COM2 or COM3 can be used, depending on the BIOS version.

No Default value: If this option is not used, no communication with the target is possible. In
such a case, error number 7 may be displayed.

Communication using an Ethernet link is not available with DOS ISaGRAF target. Ask your
supplier for special implementation.

The communication parameters have to be set before starting ISaGRAF, so that the user is totally
free to use the parameters needed. When using the workbench debugger, make sure the
workbench communication parameters (see user’s guide: Managing programs) match with the
target ones.

Example:
MODE COM1:9600,N,8,1
Sets up communication parameters to the following values:

baud rate is 9600
no parity check
8 bits of data
1 stop bit

Note that on some BIOS versions, the default workbench setting with 19200 baud is not
authorized.
CJ provides the ISAMOD.EXE utility to set the workbench parameters:
ISAMOD COM1
Is equivalent to MODE COM1:19200,N,8,1

Slave number: -s Option
This option specifies the target slave number. It can be from 1 to 255 except number 13 ($0D).
This slave number is used through the communication link protocol. It is mainly designed to
distinguish slaves from each other when more than one target are connected together. When
using the workbench debugger, make sure the workbench slave parameter (see user’s guide:
Managing programs) matches with the target one.

Default value: The default slave number is 1 (same as the workbench one)

Examples:
isamod COM1 Configure COM1 to 19200 baud, no parity, 8 data bits, 1 stop bit.
isa -t=COM1 Starts the ISaGRAF target with default slave number (1) and with COM1

as the communication port.
isa -s=3 -t=COM1 Starts the ISaGRAF target with slave number 3 and with COM1 as the

communication port.

C.3.2 Specific features

ISaGRAF start up
When the target is started, the following algorithm is executed.

No available application on disk Application OK

Wait for application download

Application OK

Look for application from disk
to load it into memory

Save application to disk

Stop application

Execute Application

• Definitions
The application code is the binary data base generated and downloaded by the workbench and
then, executed by the target. It may be completed by the symbol table.
The application symbol table is an ASCII data base generated and downloaded by the workbench.
This table makes the link between symbol objects and internal target objects. It is not required on
target except for user’s specific symbols management. For more information on symbol table see
user’s guide: Advanced programming techniques.

• Application backup
When a new application is downloaded from the workbench debugger into the target, the
application code is saved on the target current directory with the file name:

ISAx1 ISaGRAF application code backup file (where x is the slave number)

Furthermore if the application symbol table has been downloaded before, it is also saved on the
target current directory with the file name:

ISAx6 ISaGRAF application symbols backup file (where x is the slave number)

When the ISaGRAF target is started, these application code and application symbols files are
searched on the current directory and loaded into memory.
If no symbols file is available, then the target starts running the application code, with no symbols
loaded.
If no application code is available, then the target is waiting for an application to be downloaded

In order to start the target with a specific application at power up, without using the debugger link,
these files can be directly copied to the target current directory disk from the same disk if the
workbench is on the same PC, or using a floppy disk. If there is no disk on your target machine
you may use a virtual disk.

If the ISaGRAF workbench is installed on the standard \ISAWIN directory:
the application code file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.x8m
the application symbols file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.tst

Example:
From the directory where isa.exe is installed, if the following command is entered:

copy \ISAWIN\APL\MYPROJ\appli.x8m isa11
Then isa.exe will find and execute ‘myproj’ application.

All these commands can be grouped for instance into a batch file and then started from the
workbench tool menu (see user’s guide: Managing programs).

Error management and output messages
The ISaGRAF target software integrates an error detection management. You will find the warning
error list and their description in appendix.

Error detection is processed as follows:
− An error is composed of an error and argument number sent to the ISaGRAF error routine
− If the error detection flag is set in the workbench Make options, the error is processed. If not,

the information is lost and the error management ends.

When processed:
− Error number (decimal value) and argument (hexadecimal value) are displayed on the default

stdout output
− Error number and argument are pushed into a ring FIFO error buffer in order to be retrieved at

a later time. The error buffer size is set in the workbench Make options. When the buffer is
full, at each new incoming error, the oldest one is lost.

− Errors can be pulled either from the debugger or from the running application using the
SYSTEM call (see user’s guide).

When the debugger detects an error, a message describing the error is displayed in the error
window. Depending on the context of the application (running or not) the debugger may display the

name of the object (variable or program) where the error comes from, or the argument error
(decimal value) into brackets [x] which has a different meaning for each error.

A welcome message and error values are displayed on the default stdout output when the target
starts and when an error is detected. If the display is not wanted on the standard output channel, a
redirection command can be used such as:

isa -t=COM1 -s=1 >NUL

System clock
As the ISaGRAF target is designed to run on any system, the time reference used for both cycle
synchronization and timer variables refresh is the standard tick which is about 55 milliseconds.

Thus, it is not possible to have an accuracy on timer variables better than 55ms. For the same
reason, a specified cycle duration less or equal to 55 ms and different from zero will generate an
cycle duration overflow error (error 62) and no triggered cycles.

The advantage of not modifying the system tick is that any of the resident applications, or C
functions and function blocks integrated into the application will never be disturbed by the
ISaGRAF execution.

Ask your supplier for a special implementation if your application requires more accuracy.

Exit key
While testing an application in non-industrial conditions on a desktop PC, the user may wish to
stop ISaGRAF: this is done by pressing a complex combination of keys to prevent unexpected
stops. This key sequence is:

shift + ctrl + alt

Of course, if the industrial application should not be stopped when a key is hit, something should
be provided to disable these combinations.

One dangerous side effect of these fast exits, is that the IO board interface is not closed. Thus the
clean way for stopping your ISaGRAF target is:
- stop the application from the debugger (this will close the IO boards)
- stop ISaGRAF target from the keyboard

Application size
As the ISaGRAF MS-DOS target is designed for Intel real mode, the maximum size of a data
structure is 64K. Thus, the application code downloaded by the workbench should not exceed this
limit. In some very rare cases, internal structure allocated by ISaGRAF may also exceed this limit
and crash your application after download. Furthermore the whole available memory is limited to
the 640K of conventional memory.

Ask your supplier for a special implementation if your application require more memory capacity.

C.4 Getting started with ISaGRAF OS9 target

First of all you need to transfer files (at least executable files from CMDS directory) to your OS-9
target using any file transfer tool.
Then to get started you can simply run the help commands from your OS-9 system CMDS
directory:

isa -?
isaker -?
isatst -?
Isanet -?

C.4.1 Running the ISaGRAF single task: isa

The ISaGRAF target can be run as single task. But in such a configuration operations can be
critical. It is for instance recommended not to overload the communication link to guarantee good
performance. On the OS-9 multitasking system, different ISaGRAF single task targets can be run
on the same CPU as long as their slave number and communication port are different.
This single task implementation has mainly been designed for poor hardware platform such as low
cost boards or MS-DOS PC’s or to make a first prototype when porting on a new platform.
Therefore the multitasking ISaGRAF target implementation should be preferred.
The ISaGRAF single task target does not prevent the running of background processes or
interrupt driven routines.

Communication link and configuration: -t Option
The ISaGRAF single task target uses a serial link for debugger communication. The name of the
descriptor is specified with the -t option.

No Default value: If this option is not used, no communication with the target is possible. In
such a case, error number 7 may be displayed.

Communication using an Ethernet link is not available with the single task implementation.

The serial link device is opened in binary data transfer mode (no control characters, no
XON/XOFF). Other communication parameters have to be set before starting ISaGRAF, so that
the user is totally free to use the parameters needed. When using the workbench debugger, make
sure the workbench communication parameters (see user’s guide: Managing programs) match
with the target ones.
Example:
xmode /t0 baud=19200
Sets up communication baud rate to 19200 baud on /t0 device

Slave number: -s Option
This option specifies the target slave number. It can be from 1 to 255 except number 13 ($0D).
This slave number is used through the communication link protocol. It is needed to distinguish
slaves from each other when more than one target are running. When using the workbench
debugger, make sure the workbench slave parameter (see user’s guide: Managing programs)
matches with an existing target.

Default value: The default slave number is 1 (same as the workbench one)

Examples:
isa -t=/t0 Starts an ISaGRAF single task target with default slave number (1) and with /t0

as the communication port.
isa -s=3 -t=/t1 Starts an ISaGRAF single task target with slave number 3 and with /t1 as the

communication port.
isa -t=/t0 &
isa -s=3 -t=/t1 Starts two ISaGRAF single task targets. One with default slave number (1) and

with /t0 as the communication port. The other with slave number 3 and with /t1
as the communication port.

C.4.2 Running the ISaGRAF multitasks: isaker, isatst, isanet

To improve the response time of the ISaGRAF target kernel and of the communication link, the
target is split into two tasks separating communication job (isatst or isanet communication task)
from application execution (isaker kernel task).
Such architecture is more flexible. It allows the user to run more than one communication task
linked with the same kernel task or to run up to 4 kernels with the same communication task. This
makes easy some integration such as a process visualization link and the workbench debugger
link on the same application or a single link up to 4 different applications through the same
physical port.

The kernel and communication tasks are independent and can be separately forked. The only
requirement is that the kernel task(s) has to be started first so that it initializes its system
environment and the communication task(s) can link it.

The ISaGRAF multitask target does not prevent the running of background processes or interrupt
driven routines

C.4.2.1 Running the kernel task: isaker

Slave number: -s Option
This option specifies the target kernel slave number. It can be from 1 to 255 except number 13
($0D). This slave number is used through the communication link protocol and by the
communication task(s) linked to the kernel. It is needed to distinguish slaves from each other
when more than one target are running.

Default value: The default slave number is 1 (same as the workbench one)

C.4.2.2 Running the serial communication task: isatst

Communication link and configuration: -t Option
The target communication task isatst uses a serial link for debugger communication. The name of
the descriptor is specified with the -t option.

No Default value: If this option is not used, no communication with the target is possible. In
such a case, error number 7 may be displayed.

Communication using an Ethernet link is not available with isatst task implementation.

The serial link device is opened in binary data transfer mode (no control characters, no
XON/XOFF). Other communication parameters have to be set before starting ISaGRAF, so that
the user is totally free to use the parameters needed. When using the workbench debugger, make
sure the workbench communication parameters (see user’s guide: Managing programs) match
with the target ones
Example:
xmode /t0 baud=19200
Sets up communication baud rate to 19200 baud on /t0 device

Slave number: -s Option
This option specifies the target kernel slave number(s) the communication task is linked to. It can
be from 1 to 255 except number 13 ($0D). This option can be repeated up to 4 times to link up to
4 different kernel slaves. This slave number is used through the communication link protocol. It is
needed to distinguish slaves from each other when more than one target are running. When using
the workbench debugger, make sure the workbench slave parameter (see user’s guide: Managing
programs) matches with an existing target (kernel and communication tasks).

Default value: The default slave number is 1 (same as the workbench one)

Communication task logical number: -c Option
This option specifies the communication task logical number. It is used to manage more than one
communication task at a time. It can be from 1 to 255 and must be different for each
communication task.

Default value: The last -s specified option is used. The default value ensure compatibility with
previous (3.0) ISaGRAF versions.

C.4.2.3 Running the Ethernet communication task: isanet

Communication link and configuration: -t Option
The target communication task isanet uses a standard Ethernet link for debugger communication.
The port number is specified with the -t option.

No Default value: If this option is not used, no communication with the target is possible. In
such a case, error number 7 may be displayed.

When using the workbench debugger, make sure the workbench communication parameters (see
user’s guide: Managing programs) match with the target ones

For ISaGRAF, the OS-9 target is the server and the debugger is the client which connects the
specified port number.

Before starting your first debug session on Ethernet, you should make sure your OS-9 Ethernet
device is well configured. You may for instance send a ping to the OS-9 system

Slave number: -s Option
This option specifies the target kernel slave number(s) the communication task is linked to. It can
be from 1 to 255 except number 13 ($0D). This option can be repeated up to 4 times to link up to
4 different kernel slaves. This slave number is used through the communication link protocol. It is
needed to distinguish slaves from each other when more than one target are running. When using
the workbench debugger, make sure the workbench slave parameter (see user’s guide: Managing
programs) matches with an existing target (kernel and communication tasks).

Default value: The default slave number is 1 (same as the workbench one)

Communication task logical number: -c Option
This option specifies the communication task logical number. It is used to manage more than one
communication task at a time. It can be from 1 to 255 and must be different for each
communication task.

Default value: The last -s specified option is used. The default value ensure compatibility with
previous (3.0) ISaGRAF versions.

C.4.2.4 Examples:

isaker &
isatst -t=/t0

isaker
slave 1 /t0

isatst
logical Nb 1

Starts:
An ISaGRAF kernel task with default slave number (1).
An ISaGRAF serial communication task, on /t0 com Port, linked to default slave number (1), and
with default logical number (last specified slave number = default = 1).

isaker &
isanet -t=1100

isaker
slave 1 1100

isanet
logical Nb 1

Starts:
An ISaGRAF kernel task with default slave number (1).

An ISaGRAF Ethernet communication task, on Port number 1100, linked to default slave number
(1), and with default logical number (last specified slave number = default = 1).

isaker -s=2 &
isatst -t=/t0 -s=2 (respectively isanet -t=1100 -s=2)

isaker
slave 2 /t0

(1100)

Isatst
(isanet)

logical Nb 2

Starts:
An ISaGRAF kernel task with slave number 2.
An ISaGRAF serial (Ethernet) communication task, on /t0 com Port (Port number 1100), linked to
slave number 2, and with default logical number (last specified slave number = 2).

Isaker -s=1 &
isaker -s=2 &
isatst -t=/t0 -s=1 -s=2 (respectively isanet -t=1100 -s=1 -s=2)

isaker
slave 1

isaker
slave 2

/t0
(1100)

Isatst
(isanet)

logical Nb 2

Starts:
An ISaGRAF kernel task with slave number 1.
An ISaGRAF kernel task with slave number 2.
An ISaGRAF serial (Ethernet) communication task, on /t0 com Port (Port number 1100), linked to
slaves number 1 and 2, and with default logical number (last specified slave number = 2).

Isaker -s=1 &
isatst -t=/t0 -s=1 -c=1 & (respectively isanet -t=1100 -s=1 -c=1 &)
isatst -t=/t1 -s=1 -c=2 (respectively isanet -t=1101 -s=1 -c=2)

isatst
(isanet)

logical Nb 1

/t0
(1100)

isaker
slave 1

isatst
(isanet)

logical Nb 2
/t1

(1101)

Starts:
An ISaGRAF kernel task with slave number 1.

An ISaGRAF serial (Ethernet) communication task, on /t0 com Port (Port number 1100), linked to
slaves number 1, and with logical number 1.
An ISaGRAF serial (Ethernet) communication task, on /t1 com Port (Port number 1101), linked to
slaves number 1, and with logical number 2.
Note:
Serial and Ethernet communication tasks can be mixed.

C.4.3 Specific features

Communication link
As OS-9 Serial Character Manager is very flexible, almost any bi-directional physical device
supported by Microware may be used:

Example:
The serial link can be a network path to a physical port located on an another CPU.
Then the -t option would be used for example as following: -t=/nr/MASTER/t0
Where the communication link is deported on a CPU called MASTER on a ramnet network. The
physical port used is /t0.

ISaGRAF start up
When the target is started, the following algorithm is executed.

No available application on memory

Wait for application download

Application OK

Look for application from disk
to load it into memory

Save application to disk

Stop application

Execute Application

Available application on memory

• Definitions
The application code is the binary data base generated and downloaded by the workbench and
then, executed by the target. It may be completed by the symbol table.
The application symbol table is an ASCII data base generated and downloaded by the workbench.
This table makes the link between symbol objects and internal target objects. It is not required on
target except for user’s specific symbols management. For more information on symbol table see
user’s guide: Advanced programming techniques.

• ISaGRAF OS-9 objects and Multi-application

Every ISaGRAF public object name begins with 'ISAxn' where x is the kernel slave number and n
a space number with a specific meaning, except for ISAy3 where y is the communication task
logical number in the multitask implementation.
Different applications (kernels and communication tasks) can run at the same time on a CPU, as
far as they have respectively different slave numbers and different communication task logical
numbers. Nevertheless while running different applications, the user must take care of some
application objects shared access such as I/O boards. For instance different applications
(kernels) may use distinct physical boards unless some kind of I/O server or semaphore is
implemented through the I/O driver.

OS-9 object names:
Disk Files:

ISAx1 ISaGRAF application code backup file
ISAx6 ISaGRAF application symbol backup file

Memory Modules:
ISAx0 ISaGRAF kernel system data
ISAx1 ISaGRAF application code
ISAx2 ISaGRAF kernel real time data base
ISAy3 ISaGRAF communication data exchange buffer
ISAx4 ISaGRAF on line modification 1 application code
ISAx5 ISaGRAF on line modification 2 application code
ISAx6 ISaGRAF application symbol

Therefore the user must take care to not use the same object names.

• Application backup
When a new application is downloaded from the workbench debugger into the target, the
application code is saved on the target current directory with the file name:

ISAx1 ISaGRAF application code backup file (where x is the slave number)

Furthermore if the application symbol table has been downloaded before, it is also saved on the
target current directory with the file name:

ISAx6 ISaGRAF application symbols backup file (where x is the slave number)

When the ISaGRAF target is started, these application code and application symbols files are
searched on the current directory and loaded into memory as data modules with same names.

Then, if no symbols table is available on memory, the target starts running the application code,
with no symbols loaded.
If no application code is available on memory, then the target is waiting for an application to be
downloaded

In order to start the target with a specific application at power up, without using the debugger link:
•A first way may consists in directly copying these files to the target current directory disk from

the PC host where the workbench is installed, using any file transfer tool. You can use the
workbench tool menu (see user’s guide: Managing programs) to ease these manipulations.

•A second way may consists in storing the application code (and if necessary the application
symbol table) in a non volatile memory (like a PROM or EPROM), from files from the PC host
where the workbench is installed, with your own tools.

Then at system power up, if required (for example because of faster access or breakpoint
management), you may load the application code (and if necessary the application symbol
table) from the PROM to the RAM as ISAx1 (and if necessary ISAx6) memory data
module(s), with your own tools.

WARNING:
The breakpoint management of the ISaGRAF debugger cannot run correctly if the application
code module is not accessible for writing. This is not a problem, as your application has
normally been fully tested before.

On the PC host, if the ISaGRAF workbench is installed on the standard \ISAWIN directory:
the application code file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.x6m (corresponding to isax1 on the target).
the application symbols file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.tst (corresponding to isax6 on the target).

Error management and output messages
The ISaGRAF target software integrates an error detection management. You will find the warning
error list and their description in appendix.

Error detection is processed as follows:
− An error is composed of an error and argument number sent to the ISaGRAF error routine
− If the error detection flag is set in the workbench Make options, the error is processed. If not,

the information is lost and the error management ends.

When processed:
− Error number (decimal value) and argument (hexadecimal value) are displayed on the default

stdout output
− Error number and argument are pushed into a ring FIFO error buffer in order to be retrieved at

a later time. The error buffer size is set in the workbench Make options. When the buffer is
full, at each new incoming error, the oldest one is lost.

− Errors can be pulled either from the debugger or from the running application using the
SYSTEM call (see user’s guide).

When the debugger detects an error, a message describing the error is displayed in the error
window. Depending on the context of the application (running or not) the debugger may display the
name of the object (variable or program) where the error comes from, or the argument error
(decimal value) into brackets [x] which has a different meaning for each error.

A welcome message and error values are displayed on the default stdout output when the target
starts and when an error is detected. If the display is not wanted on the standard output channel, a
redirection command can be used such as:

prog_name [options] >>>/nil

Cycle duration, task behaviors, and task priorities
− At the end of an ISaGRAF cycle, just before starting a new one, the following algorithm is

performed:
If a cycle timing is specified (from the workbench: see user’s guide: Managing programs)
then the CPU is relinquished for the remained time period (specified cycle time - current

application one). If this remained time period is negative an overflow is generated and the
CPU is relinquished for 1 tick to force the scheduling

If no cycle timing is specified, or if the remained time is less or equal than 1 tick or equal to
zero, then the CPU is relinquished for 1 tick to force the scheduling

The target timing accuracy correspond to the OS-9 system tick one.

A specified cycle timing is commonly used to trig cycles or to yield the CPU to other tasks
running on the OS-9 system.

− The communication task is in sleep status while there are no incoming data through the
communication link. When needed, this task gets information on the running application
through a question/answer protocol with the kernel task. The communication task asks for a
question to the kernel. At the end of the cycle (to have a synchronous application image), the
kernel gives the answer to the communication task.

The ISaGRAF tasks do no modify the priority they have been given. The user is free to adjust
these priorities according to ISaGRAF task behaviors described above and its whole application
requirements.
For instance, to make sure that ISaGRAF is not preempted by a low priority task, the OS-9 task
management parameters such as MIN_AGE and MAX_AGE, can be modified.

Terminal mode
The target serial communication protocol recognizes a sequence of 3 carriage return characters
($0D) and then starts an OS-9 shell task, if it is available, on the serial link device.
This allows to get an OS-9 shell prompt on any terminal, using the ISaGRAF target serial link.

Example:
From the host PC:
− Close the ISaGRAF debugger.
− Start a Windows Terminal session (accessories group) with the right communication

parameters
− Hit 3 carriage return

You are now logged on an OS-9 Shell
− Type logout to exit the terminal mode.

WARNING:
The terminal mode session must always be left in a clean way using logout and nothing else,
otherwise next connection with the workbench will be unsuccessful.

C.5 Getting started with ISaGRAF VxWorks target

To run the ISaGRAF target(s), a few commands need to be executed on the VxWorks system, in
order to set the configuration environment and finally spawn the ISaGRAF target(s). All these
commands may be started from a script file. They are described in next chapters.

C.5.1 The system resource manager: isassr.o

This module is always needed, in any configuration of the ISaGRAF target, and must be the first
of the ISaGRAF target loaded modules. It enables the system resource managing of multi targets
running.

C.5.2 Common features to isa.o, isakerse.o and isakeret.o

To run ISaGRAF, one of these modules may be loaded.
isa.o: enable to start ISaGRAF single task targets (serial communication link only).
Isakerse.o: enable to start ISaGRAF multitask targets (serial communication link only).
Isakeret.o: enable to start ISaGRAF multitask targets (serial or/and Ethernet communication

link)
These modules are detailed in next chapters

Serial communication link configuration
The ISaGRAF target basically uses a serial link for debugger communication. When opened, no
configuration are performed on the specified serial link device by the ISaGRAF target. So that, the
user is totally free to use the parameters needed. Nevertheless a binary data transfer mode (RAW
mode) is required. In that way the ISAMOD () subroutine is provided.

uchar ISAMOD
(
char *desc, /* Serial device name */
uint32 baudrate /* Baud rate */
)

Description:
Configure specified serial link device for binary data transfer with specified baud rate

return value:
0 if successful, BAD_RET if errors occur

When using the workbench debugger, make sure the workbench communication parameters (see
user’s guide: Managing programs) match with the target ones.

System clock rate
The global variable CLKRATE (uint32) needs to be initialized to the VxWorks system clock rate. In
that way you can use:

CLKRATE = sysClkRateGet ()
The default value of CLKRATE is 60Hz.

C.5.3 Running the ISaGRAF single task: isa.o

The ISaGRAF target can be run as single task. But in such a configuration operations can be
critical. It is for instance recommended not to overload the communication link to guarantee good
performance. On the VxWorks multitasking system, different ISaGRAF single task targets can be
run on the same CPU as long as their slave number and communication port are different.
This single task implementation has mainly been designed for poor hardware platform such as low
cost boards or MS-DOS PC’s or to make a first prototype when porting on a new platform.
Therefore the multitasking ISaGRAF target implementation should be preferred.
The ISaGRAF single task target does not prevent the running of background processes or
interrupt driven routines.

Slave(s) registration
An ISaGRAF target is characterized by its slave number. Its value can be from 1 to 255 except
number 13 ($0D). This slave number is used through the communication link protocol. It is
needed to distinguish slaves from each other when more than one target are running. Therefore,
before starting the ISaGRAF target(s) task, you need to register it (them). In that way the
isa_register_slave() subroutine is provided.

uchar isa_register_slave
(
uchar slave /* slave number */
)

Description:
Add a new slave registration to the multi targets management system

return value:
0 if succeeded, BAD_RET if errors occur

Application backup file storage unit
The global variable TSK_FUNIT (char *) can be initialized to a string containing the path unit for
application file backup. The ISaGRAF target simply uses the standard file management routines
fopen, fread, fwrite, fclose for application file backup.
The default value is an empty string ("") to specify that there are no storage unit.

Example:
TSK_FUNIT = "host name:/C:/ISaGRAF/target/apl/"
Specify ISaGRAF\target\apl\, on root of C: unit, on the host_name PC, as application file backup
directory. Be careful not to forget the last slash, otherwise the backup is done on ISaGRAF\target\
directory with apl prefixed file names.

If needed, this variable can be set to different path units, for each target, before each spawn.
You will find more detailed information on application backup files, in the specific features;
application backup chapter.

End of Cycle control
The TSK_NBTCKSCHED (uint 32) variable can be set to a value specifying a delay in tick, used
by the ISaGRAF target at the end of the cycle.

The default value is 0 (same priority task scheduling).
If needed, this variable can be set to different value, for each target to start, before each spawn.
You will find more detailed information, in the specific features; Cycle duration, task behaviors and
task priorities chapter.

ISaGRAF target spawning
Once the configuration environment has been set, the last step consists in spawning the
ISaGRAF target(s): isa_main.

uchar isa_main
(
uchar slave, /* Slave number */
char *com /* Serial device name */
)

Description:
Starts an ISaGRAF target task.

return value:
return a value different from zero if errors occur.

The slave number is the same as discussed in the slave registration chapter.
More than one target can be started as long as their slave number and communication port are
different.
When using the workbench debugger, make sure the workbench slave parameter (see user’s
guide: Managing programs) matches with an existing target.

Example
This example shows how to start an ISaGRAF single task target with slave number 1 and with
/tyCo/1 device for the serial link.
The current host directory is the one where the target is installed.

load isassr.o module
ld < RELS/isassr.o

load isa.o module
ld < CMDS/isa.o

serial communication configuration
ISAMOD ("/tyCo/1", 19200)

System clock rate
CLKRATE = sysClkRateGet ()

slave registration
isa_register_slave (1)

File storage unit (could be skipped because default set)
TSK_FUNIT = ""

End of cycle control (could be skipped because default set)

TSK_NBTCKSCHED = 0

ISaGRAF target spawning
sp (isa_main, 1, "/tyCo/1")

C.5.4 Running the ISaGRAF multitasks: isakerse.o and isakeret.o

To improve the response time of the ISaGRAF target kernel and of the communication link, the
target is split into two tasks separating communication job (communication task) from application
execution (kernel task).
Such architecture is more flexible. It allows the user to run more than one communication task
linked with the same kernel task or to run up to 4 kernels with the same communication task. This
makes easy some integration such as a process visualization link and the workbench debugger
link on the same application or a single link up to 4 different applications through the same
physical port.

The kernel and communication tasks are independent and can be separately spawned. The only
requirement is that the kernel task(s) has to be started first so that it initializes its system
environment and the communication task(s) can link it.

The ISaGRAF multitask target does not prevent the running of background processes or interrupt
driven routines.

Two modules are proposed depending on communication hardware capabilities:
- Kernel and serial link: isakerse.o
This module enable to start the kernel task(s) and the serial communication task(s).
- Kernel and serial or/and Ethernet link: isakeret.o
This module enable to start the kernel task(s) and the serial or/and Ethernet communication
task(s).

The way of starting ISaGRAF is the same for isakerse.o and isakeret.o modules, except that for
isakeret.o, you can either specify a serial device name, or a port number for Ethernet link, as
communication device name parameter when starting the ISaGRAF communication task(s):
tst_main_ex (see below).

For ISaGRAF, the VxWorks target is the server and the debugger is the client which connects the
specified port number.

Kernel(s) registration
An ISaGRAF kernel is characterized by its slave number. Its value can be from 1 to 255 except
number 13 ($0D). This slave number is used through the communication link protocol and by the
communication task(s) linked to the kernel. It is needed to distinguish slaves from each other
when more than one target are running. Therefore, before starting the ISaGRAF kernel task(s),
you need to registered it (them). In that way the isa_register_slave() subroutine is provided.

uchar isa_register_slave
(
uchar slave /* slave number */
)

Description:
Add a new kernel slave registration to the multi targets management system

return value:
0 if succeeded, BAD_RET if errors occur

Communication task(s) registration
An ISaGRAF communication task is characterized by its logical number. It is used to manage
more than one communication task at a time. It can be from 1 to 255 and must be different for
each communication task. Therefore, before starting the ISaGRAF communication task(s), you
need to registered it (them). In that way the isa_register_com() subroutine is provided.

uchar isa_register_com
(
uchar com_id /* com. task identifier */
)

Description:
Add a new communication task registration to the multi targets management system

return value:
0 if succeeded, BAD_RET if errors occur

Application backup file storage unit
The global variable TSK_FUNIT (char *) can be initialized to a string containing the path unit for
application file backup. The ISaGRAF target simply uses the standard file management routines
fopen, fread, fwrite, fclose for application file backup.
The default value is an empty string ("") to specify that there are no storage unit.

Example:
TSK_FUNIT = "host name:/C:/ISaGRAF/target/apl/"
Specify ISaGRAF\target\apl\, on root of C: unit, on the host_name PC, as application file backup
directory. Be careful not to forget the last slash, otherwise the backup is done on ISaGRAF\target\
directory with apl prefixed file names.

If needed, this variable can be set to different path units, for each target to start, before each
kernel spawn.
You will find more detailed information on application backup files, in the specific features ;
application backup chapter.

End of Cycle control
The TSK_NBTCKSCHED (uint 32) variable can be set to a value specifying a delay in tick used
by the ISaGRAF target at the end of the cycle.
The default value is 0 (same priority task scheduling).
If needed, this variable can be set to different value, for each kernel, before each kernel spawn.
You will find more detailed information, in the specific features; Cycle duration, task behaviors and
task priorities chapter.

ISaGRAF kernel spawning

Once the configuration environment has been set, one of the last steps consists in spawning the
ISaGRAF kernel(s): isa_main.

uchar isa_main
(
uchar slave, /* Slave number */
char *com /* NOT USED Empty string is OK */
)

Description:
Starts an ISaGRAF kernel task

return value:
return a value different from zero if errors occur.

The slave number is the same as discussed in the slave registration chapter.
More than one kernels can be started as long as their slave number are different.

ISaGRAF communication task spawning
Once the configuration environment has been set, one of the last steps consists in spawning the
ISaGRAF communication task(s): tst_main_ex.

uchar tst_main_ex
(
char *com, /* Communication device name */
uchar *slave, /* Location of a 4 Bytes field specifying kernel(s) slave

to link to */
uchar com_id /* communication task identifier */
)

Description:
Starts an ISaGRAF communication task

return value:
return a value different from zero if errors occur.

The 4 Bytes field specifies the kernel slave(s), the communication task is linked to. If less than 4
kernel slaves are needed, the field must be completed with zero. Once the task has started, this
filed is not needed any more.
The communication device name corresponds to the serial device name to be used for the
communication link.
More than one communication tasks can be started as long as their task identifier are different.
When using the workbench debugger, make sure the workbench communication link parameters
(see user’s guide: Managing programs) match with an existing target (kernel and communication
tasks).

Example:
This example shows how to start:
An ISaGRAF kernel task with slave number 1.
An ISaGRAF communication task identified with number 1, linked to the kernel slave 1 and with
/tyCo/1 device for the serial link.

An ISaGRAF communication task identified with number 2, linked to the kernel slave 1 and with
1100 port number for the Ethernet communication link.
The current host directory is the one where the target is installed.

load isassr.o module
ld < RELS/isassr.o

load isakeret.o module (You may load isakerse.o when no Ethernet communication link is needed)
ld < CMDS/isakeret.o

serial communication configuration
ISAMOD ("/tyCo/1", 19200)

System clock rate
CLKRATE = sysClkRateGet ()

slave registration
isa_register_slave (1)

communication registration
isa_register_com (1)
isa_register_com (2)

File storage unit (could be skipped because default set)
TSK_FUNIT = ""

End of cycle control (could be skipped because default set)
TSK_NBTCKSCHED = 0

ISaGRAF kernel spawning
sp (isa_main, 1, "")

Communication task, slaves link
SlavesLink = 0x01000000

ISaGRAF communication tasks spawning
sp (tst_main_ex, "/tyCo/1", &SlavesLink, 1)
sp (tst_main_ex, "1100", &SlavesLink, 2)

This startup correspond to the following figure

Com task
logical Nb 1

/tyCo/1Kernel task
slave 1

Com task
logical Nb 2 1100

You also have the choice of the following basic configurations.

Kernel task
slave 1 /tyCo/1

(1100)

Com task
logical Nb 1

The most basic configuration consists in a kernel task associated to a communication task on a
serial (Ethernet) link.

Kernel task
slave 1

Kernel task
slave 2

/tyCo/1
(1100)

Com task
logical Nb 1

An another configuration consists in 2 kernel associated to a communication task on a serial
(Ethernet) link. In this case, SlavesLink = 0x01020000.

C.5.5 Specific features

ISaGRAF start up
When the target is started, the following algorithm is executed.

No available application on memory

Wait for application download

Application OK

Look for application from disk
to load it into memory

Save application to disk

Stop application

Execute Application

Available application on memory

• Definitions

The application code is the binary data base generated and downloaded by the workbench and
then, executed by the target. It may be completed by the symbol table.
The application symbol table is an ASCII data base generated and downloaded by the workbench.
This table makes the link between symbol objects and internal target objects. It is not required on
target except for user’s specific symbols management. For more information on symbol table see
user’s guide: Advanced programming techniques.
The path to the disk file unit is specified at the ISaGRAF target startup using the global variable
TSK_FUNIT (default value = "" to specify there are no disk file unit)

• ISaGRAF Multi-applications
Different applications (kernels and communication tasks) can run at the same time on a CPU, as
far as they have respectively different slave numbers and different communication task logical
numbers. Nevertheless while running different application, the user must take care of some
application objects shared access such as I/O boards. For instance different application (kernels)
may use distinct physical boards unless some kind of I/O server or semaphore is implemented
through the I/O driver.

• Application backup
When a new application is downloaded from the workbench debugger into the target, the
application code is saved (the target uses standard file management routines fopen,...) with the file
name:

pathISAx1 ISaGRAF application code backup file (where x is the slave number)

Furthermore if the application symbol table has been downloaded before, it is also saved on the
target current directory with the file name:

pathISAx6 ISaGRAF application symbols backup file (where x is the slave number)

The path is specified at the ISaGRAF target startup using the global variable TSK_FUNIT. An
empty string ("") will specify there are no disk file unit (default value).

When the ISaGRAF target is started, these application code and application symbols files are
searched on the current directory and loaded into memory.

Then, if no symbols table is available on memory, the target starts running the application code,
with no symbols loaded.
If no application code is available on memory, then the target is waiting for an application to be
downloaded

In order to start the target with a specific application at power up, without using the debugger link:
•A first way may consists in directly copying these files to the application backup storage unit

from the PC host where the workbench is installed, using any file transfer tool. You can use
the workbench "Tools" menu (see user’s guide: Managing programs) to ease these
manipulations.

•A second way may consists in storing the application code (and if necessary the application
symbol table) in a non volatile memory (like a PROM or EPROM), from files from the PC host
where the workbench is installed, with your own tools.

Then at system power up, if required (for example because of faster access or breakpoint
management), you may load the application code (and if necessary the application symbol
table) from the PROM to the RAM, with your own tools.

Then at ISaGRAF startup (just before tasks spawning) you must specify the address(es)
where the application code (and if necessary the application symbol table) is located in
memory. In that way you need to initialize the SSR global variable as following:

SSR[x][1].space = address location of application code
And if necessary:

SSR[x][6].space = address location of application symbol table

In that way you may write a short procedure. The SSR global variable is declared as an
str_ssr structure type which is defined in tasy0ssr.h file.

WARNING:
The breakpoint management of the ISaGRAF debugger cannot run correctly if the application
code is not accessible for writing. This is not a problem, as your application has normally been
fully tested before.

On the PC host, if the ISaGRAF workbench is installed on the standard \ISAWIN directory:
the application code file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.x6m (corresponding to isax1 on the target).
the application symbols file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.tst (corresponding to isax6 on the target).

Error management and output messages
The ISaGRAF target software integrates an error detection management. You will find the warning
error list and their description in appendix.

Error detection is processed as follows:
− An error is composed of an error and argument number sent to the ISaGRAF error routine
− If the error detection flag is set in the workbench Make options, the error is processed. If not,

the information is lost and the error management ends.

When processed:
− Error number (decimal value) and argument (hexadecimal value) are displayed on the default

stdout output
− Error number and argument are pushed into a ring FIFO error buffer in order to be retrieved at

a later time. The error buffer size is set in the workbench Make options. When the buffer is
full, at each new incoming error, the oldest one is lost.

− Errors can be pulled either from the debugger or from the running application using the
SYSTEM call (see user’s guide).

When the debugger detects an error, a message describing the error is displayed in the error
window. Depending on the context of the application (running or not) the debugger may display the
name of the object (variable or program) where the error comes from, or the argument error
(decimal value) into brackets [x] which has a different meaning for each error.

On the target, when an error is detected, error values are displayed on the default stdout output.
Thus the display can be directed using VxWorks routines such as

ioGlobalStdSet()
or ioTaskStdSet()
In last case, not that either the kernel or the communication tasks can generate errors

Cycle duration, task behaviors, and task priorities
− At the end of an ISaGRAF cycle, just before starting a new one, the following algorithm is

performed:
If a cycle timing is specified (from the workbench: see user’s guide: Managing programs)
then the CPU is relinquished for the remained time period (specified cycle time - current
application one). If this remained time period is negative an overflow is generated and the
CPU is relinquished for TSK_NBTCKSCHED (variable set at ISaGRAF startup) tick(s) to
force the scheduling.

If no cycle timing is specified, or if the remained time is less than 1 tick or equal to zero,
then the CPU is relinquished for TSK_NBTCKSCHED tick(s) to force the scheduling.

The target timing accuracy correspond to the VxWorks system tick one.

a specified cycle timing is commonly used to trig cycles or to yield the CPU to other tasks
running on the VxWorks system.

− The communication task is in sleep status while there are no incoming data through the
communication link. When needed, this task gets information on the running application
through a question/answer protocol with the kernel task. The communication task asks for a
question to the kernel. At the end of the cycle (to have a synchronous application image), the
kernel gives the answer to the communication task.

The ISaGRAF tasks do no modify the priority they have been given. The user is free to adjust
these priorities according to ISaGRAF task behaviors described above and its whole application
requirements.

C.6 Getting started with ISaGRAF NT target

C.6.1 Running ISaGRAF

In the NT implementation, the target runs as a single program: WISAKER.EXE, which can be
launched several times. This allows to have as many as ISaGRAF NT target you want as each
instance has a separate slave number.

The target program does not prevent the running of interrupt driven routines.

The WISAKER software is designed to run under Windows NT 3.51 or later.

C.6.2 General information on options

Options are saved and retrieved according to the following diagram:

There is a slave number and
at least one other options in
the command line

There is at least one
option in the command
line but no slave number

The ISaGRAF NT target will use
the default set of options (the
ISaGRAF section of the
ISaGRAF.INI file) taking into
account the command line.

Init

The ISaGRAF NT target will
save the options into the
default set of options (the
ISaGRAF section of the
ISaGRAF.INI file)

The ISaGRAF NT target will use
the default set of options (the
ISaGRAF section of the
ISaGRAF.INI file)

Alt+F4 or Exit
application

There is no option
in the command line

The ISaGRAF NT target will not
save the options into the default
set of options (the ISaGRAF
section of the ISaGRAF.INI file)

Alt+F4 or Exit
application

The ISaGRAF NT target will use
the set of options associated with
the slave number (the ISaGRAFs
section of the ISaGRAF.INI file),
where ‘s’ is the slave number.

The ISaGRAF NT target will save
the options into the set of options
associated with the slave number
(the ISaGRAFs section of the
ISaGRAF.INI file)

Alt+F4 or Exit
application

Note that ISAGRAF.INI file is saved in the current working directory.

Slave number: -s Option
This option specifies the target slave number. It can be from 1 to 255 except number 13 ($0D).
This slave number is used through the communication link protocol. It is mainly designed to
distinguish slaves from each other when more than one target are connected to the same host
workbench or when more than one target run on the same PC. When using the workbench
debugger, make sure the workbench slave setting (see user’s guide: Managing programs)
matches the target one.

Default value: The default slave number is 1 or the one in the ISaGRAF.INI file.

Example:
WISAKER.EXE -s=2

User interface: This window is display from the "Options/Slave" command of the main window of
ISaGRAF NT target.

Using the mouse or the arrows (Up and Down) it is possible to change the value of this option. In
order to use it, the ISaGRAF NT target should be restarted.

Communication link and configuration: -t Option
The ISaGRAF target can use a serial link or an Ethernet link for debugger communication.
The name of the port is specified with the -t option. As the communication interface is designed to
be compatible with any machine, ports COM1, COM2, COM3 or COM4 can be used for serial
communication, and port numbers starting from 1100 can be used for Ethernet communication.

Default value: The default communication port is the 1100 for Ethernet and COM1 for serial
communication or the one in the ISaGRAF.INI file.

TO BE NOTED: The default communication link is the Ethernet.

Examples:
WISAKER -t=COM2
WISAKER -t=1101

Serial configuration:
Some options can only be used if the -t=COMx option is specified.

Those are configuration options for the serial link:

Option Values Meaning

baud 600
1200
2400
4800
9600
19200

Baud rate

parity n
e
o

No parity
Even
Odd

data 7 or 8 Number of bits
stop 1 or 2 Length of the stop bit
flow h

n
Hardware control
No control

The defaults values are 19200, no parity, 8 data bits, 1 stop, no flow control

Example:
WISAKER -t=COM1 baud=1200 data=8 parity=n stop=2

User interface: This window is displayed from the "Options/Communication" command of the main
window of ISaGRAF NT target.

It is possible to choose the serial communication or the Ethernet communication. The Ethernet
communication gives the possibility to modify the port number. This port number should be the
same as in the workbench PC-PLC Link specification.

By choosing the serial communication, the configuration will appear. This configuration should be
the same as in the workbench PC-PLC Link specification.

Graphic simulation of virtual boards: -x Option
If this option is set, the boards declared virtual, in the I/O connection editor (See Part A), will be
simulated.
Possible values are 0 or 1, 0 means no simulation, and 1 means simulation on.

Default value: The default value is 0 or the one in the ISaGRAF.INI file.

Example:
WISAKER -x=1 will simulate virtual boards,

User interface: The menu item will be checked or unchecked reflecting the state of the option.
Simulated boards appear in a graphic panel.

Priority of the ISaGRAF NT target: -p Option
As the target is running under NT, it is very useful to specify a priority level. It is, for instance,
possible to have a time critical ISaGRAF application running within a target with the higher priority
and one or more targets running in background with lower priorities.

Possible values are 0, 1, 2 or 3. 0 is the highest priority, and 3 is the lowest priority.

Examples:
WISAKER -p=0
WISAKER -p=1

User interface: This window is displayed from the "Options/Priority" command of the main window
of ISaGRAF NT target.

The highest priority is the real time and the lowest is the idle priority.
0: Real time priority
1: High priority
2: Normal priority
3: Idle priority

Examples:
wisaker -t=COM1 Starts the ISaGRAF target with default slave number (1) and with COM1

as the communication port.
wisaker -s=3 -t=COM1 Starts the ISaGRAF target with slave number 3 and with COM1 as the

communication port.

C.6.3 Specific features

ISaGRAF start up

When the target is started, the following algorithm is executed.

No available application on disk Application OK

Wait for application download

Application OK

Look for application from disk
to load it into memory

Save application to disk

Stop application

Execute Application

• Definitions
The application code is the binary data base generated and downloaded by the workbench and
then, executed by the target. It may be completed by the symbol table.
The application symbol table is an ASCII data base generated and downloaded by the workbench.
This table makes the link between symbol objects and internal target objects. It is not required on
target except for user’s specific symbols management as for instance the DDE feature or I/Os
simulation with symbol names feature. For more information on symbol table see user’s guide:
Advanced programming techniques.

• ISaGRAF Multi-applications
Different applications can run at the same time on a CPU, as far as they have respectively
different slave numbers and different communication task logical numbers. Nevertheless while
running different application, the user must take care of some application objects shared access
such as I/O boards. For instance different application may use distinct physical boards unless
some kind of I/O server or semaphore is implemented through the I/O driver.

• Application backup
When a new application is downloaded from the workbench debugger into the target, the
application code is saved on the target current directory with the file name:

ISAx1 ISaGRAF application code backup file (where x is the slave number)

Furthermore if the application symbol table has been downloaded before, it is also saved on the
target current directory with the file name:

ISAx6 ISaGRAF application symbols backup file (where x is the slave number)

When the ISaGRAF target is started, these application code and application symbols files are
searched on the current directory and loaded into memory.

If no symbols file is available, then the target starts running the application code, with no symbols
loaded.
If no application code is available, then the target is waiting for an application to be downloaded.

In order to start the target with a specific application at power up, without using the debugger link,
these files can be directly copied to the target current directory disk from the same disk if the
workbench is on the same PC, or using a floppy disk.

If the ISaGRAF workbench is installed on the standard \ISAWIN directory:
the application code file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.x8m
the application symbols file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.tst

Example:
From the directory where WISAKER.EXE is installed, if the following command is entered:

copy \ISAWIN\APL\MYPROJ\appli.x8m isa11
Then WISAKER.EXE will find and execute ‘myproj’ application.

All these commands can be grouped for instance into a batch file and then started from the
workbench tool menu (see user’s guide: Managing programs)

DDE specification
The ISaGRAF NT target is a DDE server (Dynamic Data Exchange). Any software that can be a
client, can be connected with the target to exchange variables. For example, MSEXCEL can
animate graphics with values coming from ISaGRAF target via DDE.
The DDE feature requires on the target the application symbols table.
DDE subjects are defined as follows:

Note : ‘s’ is the slave number

TOPICS

SYSTEM

<VARIABLE NAME>

<VARIABLE NAME>

TOPICITEMLISTItems :

Topics :

Server name :

<APPLICATION NAME>

ISASRVs

« ISASRVs » is the name of the DDE server, ‘s’ is the slave number.
« SYSTEM » is a standard topic which gives access to the « TOPICS » item,
« TOPICS » gives the list of the topics currently defined: system and the name of the application
which is running into the ISaGRAF NT target.
« APPLICATION NAME » is the name of the application.
« TOPICITEMLIST » is the list of items available under the current topic, this gives the list of the
variables which can be accessed via DDE.
« VARIABLE NAME » is the name of a variable.

DDE advise loop rate for ISaGRAF NT target: -d Option

The DDE client generally polls the variables each time it needs them. This can take a large
amount of time if there are a lot of variables. There is another mode which is called advise mode
(advise loop), in which the server itself will only send modified variables. So that communications
are minimized and efficient. In this mode the server periodically looks at the variables marked as
advised variables to know which should be sent. This period is called the DDE advise loop rate.

With this option, it is possible to specify the rate (in ms) for the DDE advise loop.

Default value: The default value is 1000 ms or the one in the ISaGRAF.INI file

Example:
WISAKER -d=100

User interface: This window is displayed from the "Options/DDE" command of the main window of
ISaGRAF NT target.

Error management and output messages
The ISaGRAF target software integrates an error detection management. You will find the warning
error list and their description in appendix.

Error detection is processed as follows:
− An error is composed of an error and argument number sent to the ISaGRAF error routine
− If the error detection flag is set in the workbench Make options, the error is processed. If not,

the information is lost and the error management ends.

When processed:
− Error number (decimal value) and argument (hexadecimal value) are displayed on the output

(window of the WISAKER.EXE)
− Error number and argument are pushed into a ring FIFO error buffer in order to be retrieved at

a later time. The error buffer size is set in the workbench Make options. When the buffer is
full, at each new incoming error, the oldest one is lost.

− Errors can be pulled either from the debugger or from the running application using the
SYSTEM call (see user’s guide).

When the debugger detects an error, a message describing the error is displayed in the error
window. Depending on the context of the application (running or not) the debugger may display the
name of the object (variable or program) where the error comes from, or the argument error
(decimal value) into brackets [x] which has a different meaning for each error.

A welcome message is displayed on the output when the target starts. It is composed of the slave
number, the communication configuration and the DDE server name.

System clock
As the ISaGRAF NT target is designed to run on any system, the time reference used for both
cycle synchronization and timer variables refresh is the standard tick which is 10 milliseconds.

Thus, it is not possible to have an accuracy on timer variables better than 10ms. For the same
reason, a specified cycle duration less or equal to 10 ms and different from zero will generate an
cycle duration overflow error (error 62). See the following chapter for more information.

Ask your supplier for a special implementation, if your application requires more accuracy.

Cycle duration and target behavior
At the end of an ISaGRAF cycle, just before starting a new one, the following algorithm is
performed:

If a cycle timing is specified (from the workbench: see user’s guide: Managing programs)
then the CPU is relinquished for the remained time period (specified cycle time - current
application one). If this remained time period is negative an overflow is generated and the
CPU is relinquished for 1 tick to force the scheduling

If no cycle timing is specified, or if the remained time is less or equal than 1 tick or equal to
zero, then the CPU is relinquished for 1 tick to force the scheduling

The target timing accuracy correspond to the Windows NT system tick one.

A specified cycle timing is commonly used to trig cycles or to yield the CPU to other processes
running on the Windows NT system.

Exit key
While testing an application in non-industrial conditions on a desktop PC, the user may wish to
stop ISaGRAF: this is done by pressing a combination of keys to prevent unexpected stops. This
key sequence is:

alt + F4

One dangerous side effect of this fast exit, is that the IO board interface is not closed. Thus the
clean way for stopping your ISaGRAF target is:
- stop the application from the debugger or from the Stop/Start push button (this will close the IO
boards)
- stop ISaGRAF target from the system menu.

C.6.4 User interface

This is the user interface of the ISaGRAF NT target:

Status Icon
W indow’s title Menus

Errors and messages output

Status bar

Stop/Start push button

There are the main items:
a window title
a menu bar
a running status icon
a Start/Stop push button
an errors and messages output
and a status bar.

The window title contains « ISaGRAF - name_of_appli - target », where name_of_appli is the
name of the running application. It contains only « ISaGRAF - - Target » when there is no running
application.

ISaGRAF NT target menu bar:
The menu bar has four menus:

Options
Messages
View
Help

• "Options" menu
(see also first section on NT:General information on options)
The "Options" menu gives access to the running options. It proposes the following options:

Slave gives access to the slave number modification. The modified option will be
activated only after next start of the target. This feature isn’t available if the target has
been started with at least one option in the command line.

Communication gives access to the communication configuration. The modified option
will be activated only after next start of the target. This feature isn’t available if the target
has been started with at least one option different from -s option.

DDE gives access to the DDE advise loop rate modification. The modified option will be
activated only after next start of the target. This option isn’t available if the target has been
started with at least one option different from -s option.

Simulate I/O is checked or unchecked reflecting the state of the option. The modified
option will be activated only after next Stop/Start of the application.

Priority gives access to the priority modification. The modified option is activated
immediately.

Default Options retrieves the default running options for the following only:
- Communication
- DDE
- coordinates of the window on the screen
The modified options will be activated only after next start of the target. This feature isn’t
available if the target has been started with at least one option different from -s option.

• "Messages" menu
The "Messages" menu is the management of the output. It contains the two following commands:

Acknowledge stops the red blink in case of errors or messages.

Clear totally erases the output.

ISaGRAF NT target icon:
The icon reflects the states of the target:

− application is running, then the icon turns
− no application (or application stopped), then the icon is stopped
− errors or messages are present in the output window. The center of the icon blinks

red. To stop the blink, it possible to choose the « Acknowledge » item of the
« Messages » menu or the « Clear » item of the same menu (beware that this item
will completely erase the output window). You will find more information on errors, in
the error management and output massages chapter.

The different states are sum up in the following table:

no error errors or messages
(the center is red)

running application

no application

ISaGRAF NT target Start/Stop push button:
The Start/Stop push button is strictly identical to the start/stop function of the debugger. The text
in the push button will reflect the running state of the application. If the application is running, the
text will be « Stop », if the application is stopped (or if there is no application), the text will be
« Start » (please note that if there is no application, and the start action is requested, the push
button will toggle into the Stop mode and then it will come back to the Start mode).

ISaGRAF NT target, general information
With the "View / Information" command, the following dialog box gives general information on the
target configuration and on the running application:

There are three topics:

a) General setup:
n The slave number
n the communication configuration (If the communication link is the Ethernet one,

in addition to the port number, the list of available IP address on the current NT
system is displayed)

b) DDE setup
n the advise loop rate
n the DDE server name
n the DDE topics and items name. This is a general information, this doesn’t

reflect the real values. In fact the fields between < > should be replaced by the
real values.

c) Application
n The application status which is its name when there is a running application,

and is the string ‘No application’ when there is no running application
n The running mode of application, which indicates if the application is running

through the software processor. It contains in this case the string: « Software
processed ». Or if the application had been compiled with a C compiler. It
contains in this case the string: « C compiled ». If there is no running
application, it contains the string: « No application ».

n The code size in bytes. If the running mode is « C compiled », this field is zero.
n The data size in bytes. This is the sum of the runtime internal data and the

variables database.

ISaGRAF NT target simulation of virtual boards:
When the option « Simulate I/O » is selected, at the next application start the following window will
appear:

Depending on your I/O connection configuration, there will be more or less boards (and different)
and more or less variables (and different). The numbers « s:b »at the top of each board represent

the slot identifier (s) and the board identifier (b). The count starts at zero, and it isn’t possible to
modify it.
The ‘32bits Boards Simulator’ window works with the Start/Stop application state. So if there is a
running application which has virtual boards (or uses simulator boards) and the « Simulate I/O »
flag is checked, this window will appear. On the contrary as soon as the Stop push button is
depressed, it will be closed. This window works along with the I/O calls.

The "Options" menu proposes two items:

Variable names will show the names of the variables if and only if the symbols table has
been downloaded prior to the tic code.

Hexadecimal values will show each integer in hexadecimal format instead of default
decimal format

The variable names will look as follows:

C.7 "C" programming

C.7.1 Overview

This manual is aimed at the user already having experience in ISaGRAF concepts and
Workbench tools. After developing pure automation applications using conversion functions,
"C" functions and function blocks from the CJ International standard libraries, it is possible to
develop "user defined" conversion functions, "C" functions and function blocks. This allows the
user to enhance the ISaGRAF target PLC by creating new libraries, and to get the maximum out
of the workstation flexibility and hardware platform.

With a "C" development system, and with some previous experience in "C" programming, this
manual will enable the user to customize his ISaGRAF target PLC for the best possible control.
Such developments improve the target PLC performance as well as the comfort and quality of
development with the ISaGRAF Workbench for the automation programmer.

Information contained in this document is not dedicated to one special target system. Some
features, however, (such as multitasking capabilities) cannot be applied to some monotasking
systems.

Standard ISaGRAF workbench features
The ISaGRAF Workbench offers many functions to manage the "C" component libraries on the
automation development side. For the automation programming, a "C" conversion, function or
function block is a "black box", completely defined by its interface.

The ISaGRAF Library Manager is used to add components to the existing libraries and define the
interface between the "C" implementation and the use of these components in the ST/FBD
programming. The ISaGRAF Library Manager also provides an automatic generation of the frame
of the "C" source code for conversions, functions and function blocks, and includes tools for
editing such "C" source files. Refer to the ISaGRAF User's Guide for further information about
the functions of the Library Manager.

"C" language development
The ISaGRAF Workbench does not include any "C" compiler or cross compiler tool. The user
must own a "C" compiler, dedicated to the ISaGRAF target system, to integrate his "C"
components to the ISaGRAF kernel.

When using a cross compiler, the ISaGRAF Workbench offers the user entry points for running a
user defined MS-DOS command file (.bat), in a DOS window. The cross compiler used must run
in a DOS emulation window. If not, Windows must be closed before running the compilers and
linkers in a pure MS-DOS context.

Technical notes
The ISaGRAF Library Manager allows the user to write a text description for each of the library
components. This technical note is the user's guide of the "C" component developed, and is for

the benefit of the automation programmer, to describe the corresponding conversions, functions or
function blocks in ISaGRAF applications.

The conversion, "C" function or function block must be precisely defined in the technical note, so
that the automation programmer can really use it as a packaged ISaGRAF function. For a "C"
function, the technical note must describe:

q the detailed function processed by the function
q the complete description of its calling parameters
q the meaning of its return value
q the detailed typing of its calling parameters and return value
q the application context

For a "C" function block, the technical note must describe:

q the detailed function processed by the block activation function
q the complete description of its calling parameters
q the meaning of its return parameters
q the detailed typing of its calling and return parameters
q the application context

For a conversion function, the technical note must describe:

q the exact meaning of the conversion when used with an input variable
q the exact meaning of the conversion when used with an output variable
q the limits of the values the conversion can process

Technical notes may also contain information about:

q the complete identification of the conversion, function or function block
q any information about its maintenance and updates
q the supported target system
q the special multitasking features
q the required system services, memory, drivers...

C.7.2 "C" Conversion functions

The ISaGRAF Workbench includes a linear conversion utility to carry out simple analog I/O
conversion at run time on the ISaGRAF target PLC. This utility does not require any "C"
development, as it is limited to strictly increasing or decreasing continuous functions. Refer to the
ISaGRAF User's Guide for a complete description of these tools.

Conversion functions enable the user to apply any complex conversion, with specific operations
described in the "C" language. Basically, a conversion function is defined for both inputs and
outputs. Even if one direction is not used, implementation and tests have to be made before
integrating the conversion to the ISaGRAF kernel, to prevent any system crash due to a wrong
call.

Conversion functions are written in "C" language, compiled and linked with the ISaGRAF kernel.
The increased kernel must be installed on the ISaGRAF target PLC before using new conversion

functions in ISaGRAF projects. New conversion functions cannot be integrated in the ISaGRAF
Simulator. The ISaGRAF applications have to be simulated before inserting the non standard
conversion functions.

The "C" source code of the standard conversions written by CJ International are installed with the
ISaGRAF Workbench. They can be used as examples for creating new functions. It is
recommended not to modify the standard functions so they can be used in any ISaGRAF
application. The standard conversions delivered with the ISaGRAF Workbench are supported by
the ISaGRAF simulator.

Warning: Conversion functions are synchronous operations, activated at run time by the
ISaGRAF I/O manager, during the input or output phases of the application cycle. Time spent for
the execution of a conversion function is included in the ISaGRAF application cycle timing. The
user has to ensure than no "wait operation" is programmed in a conversion function, so that the
ISaGRAF cycle processing is not unnecessarily extended.

Adding a function to the ISaGRAF library
The ISaGRAF Library Manager must be used to add a new conversion function to the ISaGRAF
library, on the Workbench side. The "New" command of the "Files" menu is used, when the
conversion function library is selected. No parameter has to be defined on the Workbench,
because conversion functions use a standard predefined interface.

When a new conversion function has been created, its technical note must be written. The frame
of the "C" source code for the new conversion function is automatically generated by the
ISaGRAF Library Manager.

Using a conversion in an ISaGRAF project
Defined conversion functions can be used to filter values of any input or output analog variable of
the selected project. To attach a conversion function to a variable, the variables declaration editor
is run, an input or output analog variable selected and then its parameters edited. The
"conversion" field of the analog declaration dialog box is used to setup the conversion function
attached to an analog I/O variable:

Both conversion functions and tables appear in the list. This implies that the same name cannot
be used for a function and a table. A variable cannot be attached to a conversion function that has
yet to be defined or integrated into the ISaGRAF kernel.

Standard "C" interface
The interface of a conversion function always has the same format. Calling and return parameters
are passed through a structure. This structure is defined in the "TACN0DEF.h" file:

/*
 Name: tacn0def.h

 Target conversions definition file
*/

#define DIR_INPUT 0 /* direction = input conversion */
#define DIR_OUTPUT 1 /* direction = output conversion */

typedef int32 T_ANA; /* integer ANA type */
typedef float T_REAL; /* real ANA type */

typedef struct { /* conversion structure */
 uint16 number; /* conversion number (reserved) */
 uint16 direction; /* conversion direction */
 T_REAL *before; /* value before conversion */
 T_REAL *after; /* value after conversion */
 } str_cnv;

#define ARG_BEFORE (*(arg->before))
#define ARG_AFTER (*(arg->after))
#define DIRECTION (arg->direction)

/* eof */

The "str_cnv" structure completely describes the interface. The only parameter of a "C"
conversion function is a pointer to such a structure. The "number" field is the logical number of
the conversion function (location in the ISaGRAF library) and does not have to be used in the
programming.

The "direction" field indicates whether the conversion must be applied on an input variable or an
output variable. It contains the DIR_INPUT value for an input conversion, or the DIR_OUTPUT
value for an output conversion.

The "before" field points to the value before the conversion. This field has a different meaning for
an input or an output conversion. It represents the electrical value (read on the input device) for an
input conversion, when the direction field takes the DIR_INPUT value. It represents the physical
value (used in the programmed equations) for an output conversion, when the direction field
takes the DIR_OUTPUT value.

The "after" field points to the value after the conversion. This field has a different meaning for an
input or an output conversion. It represents the physical value (used in the programmed
equations) for an input conversion, when the direction field takes the DIR_INPUT value. It
represents the electrical value (sent to the output device) for an output conversion, when the
direction field takes the DIR_OUTPUT value.

The programmer can use the "ARG_BEFORE" and "ARG_AFTER" definitions to directly access
the before and after field of the structure passed to the "C" conversion function. Processed

values are single precision floating values. The result is converted to a long integer when the
conversion is applied to an integer analog variable. This means that the same conversion can be
used for both real or integer analog I/O variables.

Source code
Because the conversion function can be used for both input and output analog variables, the "C"
source code of the function is divided into two main parts: the input conversion, and the output
conversion. The direction field of the interface structure is used to select the conversion to be
applied. The ISaGRAF Library Manager automatically generates the complete frame of the
function, when the conversion function has been created. This includes the main selecting "IF"
structure. Below is the standard frame of a conversion function:

/*
 conversion function
 name: sample
*/

#include <tasy0def.h>
#include <tacn0def.h>

void CNV_sample (str_cnv *arg)
{

if (DIRECTION == DIR_INPUT) { /*INPUT CONV*/

}
else { /*OUTPUT CONV*/

}
}

/* The following function shows the link with the ISaGRAF I/O manager, using
the name of the conversion. This function is completely generated by the
ISaGRAF Library Manager. */

UFP cnvdef_sample (char *name)
{

sys_strcpy (name, "SAMPLE"); /* gives the name of the conversion */
return (CNV_sample); /* returns the implementation function */

}

The best way to complete the specific part of the function is to write two separate local functions
for input conversion and output conversion. These functions will be called by the main algorithm,
as shown in comments in the previous example, in the main IF structure.

The "TASY0DEF.H" include file from the ISaGRAF kernel is required for system dependent
definitions. It also contains the definition of the UFP type, which represents a pointer to a void
function, and is used for the declaration function.

Links between projects and "C" implementation
The logical link between the implementation of a conversion function and the use of the conversion
in an ISaGRAF project is made with the name of the conversion. A "declaration" function is added
to the "C" source code of the conversion function. This function is called only one time when the
application starts, and indicates to the ISaGRAF I/O manager the conversion name which
corresponds to the function to be implemented. This is the standard format of such a declaration
function:

UFP cnvdef_xxx (char *name)
{

strcpy (name, "XXX"); /* gives the name of the conversion */
return (CNV_xxx); /* returns the implementation function */

}
/* (xxx is the name of the conversion) */

The name of the function, used for the strcpy statement must be written in uppercase. It must be
written in lowercase in the name of the conversion implementation function and in the name of
declaration function.

Using the "CNV_" and "cnvdef_" prefixes for implementation function and definition function
enables the user to name a conversion with a reserved keyword of the "C" language, or the name
of an existing function of the "C" ISaGRAF libraries.

Other statements can be added to the declaration function to realize any specific initialization
operation relative to this conversion. The ISaGRAF system ensures the user that this function is
called only one time when the application starts.

The declaration function is called for any integrated conversion function, even if it is not used in
the ISaGRAF application. The ISaGRAF kernel fails in a fatal error if a conversion used in the
application is not integrated to the kernel.

Before linking new functions with the kernel, the user must write another "C" source file, named
"GRCN0LIB.C", and insert it (with the retained conversion functions) in the list of files for the
linker. The "GRCN0LIB.C" only contains an array of declaration functions. This array is read
during application initializations, to make a dynamic link with the conversion functions written in
"C". This is an example of such a file:

/* File "GRCN0LIB.c" - Example with conversions of standard library */

#include <tasy0def.h> /* required for types definition */

extern UFP cnvdef_scale (char *name); /* decl. function for SCALE conv */

extern UFP cnvdef_bcd (char *name); /* decl. function for BCD conv */

UFP_LIST CNVDEF[] = { /* array of declaration functions for */
/* integrated conversion functions */
cnvdef_scale,
cnvdef_bcd,

NULL };

/* end of file */

The CNVDEF array must be terminated by a NULL pointer. Some clashes may occur when this
condition is not met. Unresolved references will occur when linking the new ISaGRAF kernel if the
CNVDEF array is not defined.

By writing this file, a new kernel can be built, including all the existing conversions. A kernel can
also be built customized for one project, by inserting in the CNVDEF array only the conversions
used in the project. The "GRCN0LIB.C" file is automatically generated by the ISaGRAF Code
Generator, when the code of an application is built. The file is placed in the ISaGRAF project
directory, and groups only the conversions used in the project.

Limits
The ISaGRAF library may contain up to 128 conversion functions. Any type of operation may be
processed in a conversion function. It should be noted that the functions are called in the
ISaGRAF cycle in a synchronous way, so that the execution of the function has direct effect on
the cycle timing.

C.7.3 "C" Functions

"C" functions are used to increase standard capabilities of ST and FBD languages. They can be
used to realize any specific calculations, system calls, communications, or to install a set of
services for dialog between an ISaGRAF application and other tasks. Functions are written in "C"
language, compiled and linked with the ISaGRAF kernel. The increased kernel must be installed
on the ISaGRAF target PLC before using new functions in ISaGRAF projects.

New functions cannot be integrated in the ISaGRAF Simulator. The ISaGRAF applications have
to be simulated before using the non standard functions.

Warning: Functions are synchronous operations, activated at run time by the ISaGRAF kernel,
during the application cycle. Time spent for the execution of a function is included in the ISaGRAF
application cycle timing. The user has to ensure that no "wait operation" is programmed in a
function, so that the ISaGRAF cycle processing is not unnecessarily extended.

Adding a function to the ISaGRAF library
The ISaGRAF Library Manager must be used to add a new "C" function to the ISaGRAF library,
on the Workbench side. The "New" command of the "Files" menu is used, when the "C"

functions library is selected. When a new function has been created, its technical note must be
written. The frame of the "C" source code for the new function is automatically generated by the
ISaGRAF Library Manager.

The "Parameters" command of the "Edit" menu is used to define the call and return parameters
of the new function.

Using a "C" function in an ISaGRAF project
Any integrated "C" function can be used as a standard function in the programs of an ISaGRAF
project. "C" functions can be called from ST and FBD languages, and from special statements of
the SFC language.

Calling a "C" function from the ST language follows the function call conventions of the language.
The call parameters of the function are written after the name of the function, between
parentheses, and separated by commas. The expression represents the value returned by the
function. A "C" function call may be inserted into any assignment statement or complex
expression. This is an example of a "C" function call in an assignment statement:

result := ProcName (par1, par2, ... parN);

An FBD program can call any "C" function. A function is used as a standard function box. Its call
parameters are connected to the left hand side of the function box. The return parameter is
connected to the right hand side of the box. Here is the standard aspect of such a function box:

Calling
parameters

XXX

Name of the function

return
parameter

A "C" function can be called from any SFC action block, or in any boolean condition attached to a
transition.

Defining the interface of a "C" function
The "Parameters" command of the "Edit" menu is used to define the call and return parameters
of a new function. A function can have up to 31 call parameters, and always has one return
parameter.

The list in the upper side of the window shows the parameters of the "C" function, according to the
order of the function calling prototype: first the calling parameters, lastly the return parameter. The
lower part of the window shows the detailed description of the parameter currently selected in the
list:
- the name of the parameter
- the direction (call/return) of the parameter
- the type of the parameter

Any of the ISaGRAF data types may be used for a parameter: Boolean, Integer analog, Real
analog, Timer or Message. Integer and real analogs must be distinguished.
Below is the correspondence between ISaGRAF types and "C" types:

BOOLEAN unsigned long unsigned 32 bit word: 1=true / 0=false
ANALOG long signed integer 32 bit word
REAL float single precision floating value
TIMER unsigned long unsigned integer 32 bit word (unit is 1 millisecond)
MESSAGE char * character string.

When a message value is passed onto a "C" function, it cannot contain null characters. The string
passed to the "C" code is null-terminated. Do not forget that the return parameter must be the last
one in the list. The rules shown below must be followed while naming parameters:
- the length of the name cannot exceed 16 characters
- the first character must be a letter
- the following characters must be letters, digits or underscore character
- naming is case insensitive

The same name cannot be used for more than one parameter of the function. A call parameter
cannot have the same name as the return parameter. The same name can be used for
parameters of different functions. The default name for return parameter is "Q". This name can be
freely modified. The name of a parameter is used to identify the parameter in the "C" source code.

The "Insert" command is used to insert a new parameter before the selected parameter. The
"Delete" command is used to erase the selected parameter. The "Arrange" command
automatically rearranges (sorts) the parameters, so that the return parameter is put at the end of
the list. Pressing the "OK" button stores the definition of the function interface and closes the
dialog box. Pressing the "Cancel" button closes the dialog box, without changing the definition of
the function interface.

Function "C" interface
The interface of a function depends on the definition of its parameters. Calling and return
parameters are passed through a structure. This structure is defined in the "GRUS0nnn.H" file,
where "nnn" is the logical number of the function in the ISaGRAF library. This is an example of
the "C" interface, for the "SIN" function (sines calculation):

/* File: GRUS0255.h - function "sample" */

typedef long T_BOO;
typedef long T_ANA;
typedef float T_REAL;
typedef long T_TMR;
typedef char *T_MSG;

typedef struct {
/* CALL */ T_REAL _param1;
/* RETURN */ T_REAL _param2;

} str_arg;

#define PARAM1 (arg->_param1)

#define PARAM2 (arg->_param2)

/* end of file */

The relationship between ISaGRAF types and "C" types is shown below. The ISaGRAF types are
defined as "C" types in the definition file of the function.

boolean T_BOO long (32 bits)
Integer analog T_ANA long
Real analog T_REAL float (32 bits - single precision)
timer T_TMR long
message T_MSG char * (32 bits - char pointer)

Each field of the "str_arg" structure corresponds to one parameter of the function. The return
parameter is the last in the structure. The calling parameters appear in the structure with the same
order than the one established for the function definition. An uppercase identifier is defined to
directly have access to one parameter of the structure passed to the "C" implementation of the
function. Names of the identifiers are the ones entered during the definition of the function with the
ISaGRAF Library Manager.

The "C" definition file is updated each time the interface of the function is changed by using the
ISaGRAF Library Manager. This ensures a complete match between the implementation of the
function and its use in the programs of the ISaGRAF applications.

Source code
Below is the standard frame of a "C" function implementation:

/* Example of user function - Number is "255" - Name is "SAMPLE" */

#include "tasy0def.h" /* ISaGRAF kernel common definitions */
#include "grus0255.h" /* interface definition for function 255 */

void USP_sample (str_arg *arg)
{

/* body of the function */
}

/* The following function is used for the initialization of the function and the
declaration of its implementation. It realizes the link with the ISaGRAF kernel,
using the name of the function. This function is completely generated by the
ISaGRAF Library Manager. */

UFP uspdef_sample (char *name)
{

strcpy (name, "SAMPLE"); /* gives the name of the function */
return (USP_sample); /* returns the implementation function */

}

/* end of file */

The "TASY0DEF.H" include file from the ISaGRAF kernel is required for system dependent
definitions. It also contains the definition of the UFP type, which represents a pointer to a void
function, and is used for the declaration function.

Links between projects and "C" implementation
The logical link between the implementation of a "C" function and its use in the programs of an
ISaGRAF project is made with the name of the function. A "declaration" function is added to the
"C" source code of the function. This function is called only once when the application starts, and
indicates to the ISaGRAF kernel the "C" function name which corresponds to the implemented
function. This is the standard format of such a declaration function:

UFP uspdef_xxx (char *name)
{

strcpy (name, "XXX"); /* gives the name of the function */
return (USP_xxx); /* returns the implementation function */

}
/* (xxx is the name of the function) */

The name of the "C" function, used for strcpy statement must be written in uppercase. It must
be written in lowercase in the name of the implementation function and in the name of the
declaration function. Using the "USP_" and "uspdef_" prefixes for implementation function and
definition function enables the user to name a function with a reserved keyword of the "C"
language, or the name of an existing function of the "C" ISaGRAF libraries.

Other statements can be added to the declaration function to create any specific initialization
operation relative to this function. The ISaGRAF system ensures the user that this function is
called only once when the application starts. The declaration function is called for any integrated
"C" function, even if it is not used in the programs of the ISaGRAF application. The ISaGRAF
kernel fails in a fatal error if a "C" function used in the application is not integrated to the kernel.

Before linking new functions with the kernel, the user must write another "C" source file, named
"GRUS0LIB.C", and insert it (with the retained functions) in the list of files for the link. The
"GRUS0LIB.C" only contains an array of declaration functions. This array is read during
application initialization, to establish a dynamic link with the functions written in "C". This is an
example of such a file:

/* File "GRUS0LIB.c" - Example using trigonometric functions */

#include <tasy0def.h> /* required for types definition */

extern UFP uspdef_fc1 (char *name); /* declaration functions */
extern UFP uspdef_fc2 (char *name);
extern UFP uspdef_fc3 (char *name);
extern UFP uspdef_fc4 (char *name);

UFP_LIST USPDEF[] = { /* array of declaration functions */
/* for integrated functions */
uspdef_fc1,
uspdef_fc2,
uspdef_fc3,
uspdef_fc4,

NULL };

/* end of file */

The USPDEF array must be terminated by a NULL pointer. Some clashes may occur when this
condition is not met. Unresolved references will occur when linking the new ISaGRAF kernel if the
USPDEF array is not defined. By writing this file, a new kernel can be built, including all the
existing functions. A kernel dedicated to one project can also be built, by inserting in the USPDEF
array only the functions used in the project. The "GRUS0LIB.C" file is automatically generated by
the ISaGRAF Code Generator when the code of an application is built. The file is placed in the
ISaGRAF project directory, and groups only the functions used in the project.

Limits
The ISaGRAF library may contain up to 255 "C" functions. Any type of operation may be
processed in a function. It should be remembered that the functions are called in the ISaGRAF
cycle synchronously, so that the execution of the function has a direct effect on the cycle timing.

Complete example
Below is the complete programming of a "sample" function, which just performs an addition.
Below is the technical note of the function:

name: SAMPLE
description: just performs an integer analog addition

creation date: 1st July 1992
author: CJ International

call: par1, par2: integer operands
return: integer sum

prototype: sum := sample (par1, par2);

Below is the interface of the function:

Below is the "C" source header of the function:

/* File: GRUS0255.h - user C function definitions - Name: sample */

/* definition of standard ISaGRAF data types */

typedef long T_BOO;
typedef long T_ANA;
typedef float T_REAL;
typedef long T_TMR;
typedef char *T_MSG;

/* definition of the calling and return parameter structure */

typedef struct {
T_ANA _par1; /* calling parameter #1 */
T_ANA _par2; /* calling parameter #2 */
T_ANA _sum; /* return parameter */

} str_arg;

/* identifiers used to access call and return parameters */

#define PAR1 (arg->_par1)
#define PAR2 (arg->_par2)
#define SUM (arg->_sum)

/* end of file */

Below is the "C" source code of the function. Only the lines printed with bold characters were
manually entered by the C programmer.

/* File: GRUS0255.c - user C function - Name: SAMPLE */

#include "tasy0def.h" /* required for types definition */
#include "grus0255.h" /* C function source header */

/* C main service: calculates the addition */

void USP_sample (str_arg *arg)
{

SUM = PAR1 + PAR2;
}

/* declaration service required for dynamic link with ISaGRAF kernel */

UFP uspdef_sample (char *name)
{

strcpy (name, "SAMPLE");
return (USP_sample);

}
/* end of file */

C.7.4 "C" FUNCTION BLOCKS

"C" function blocks associate operations and static data. They complete the set of "C" functions,
by allowing the processing of static objects. They are commonly used to increase standard
capabilities of ST and FBD languages. Unlike functions, which process values, function blocks
can process static data. This means that a function block algorithm can manage the variations of
data over time.

Function blocks are written in "C" language, compiled and linked with the ISaGRAF kernel. The
increased kernel must be installed on the ISaGRAF target PLC before using new function blocks
in ISaGRAF projects. New function blocks cannot be integrated in the ISaGRAF Simulator. The
ISaGRAF applications have to be simulated before using the non standard functions.

Warning: Function block calls are synchronous operations, activated at run time by the
ISaGRAF kernel, during the application cycle. Time spent for the execution of a function block
activation or read service is included in the ISaGRAF application cycle timing. The user has to
ensure that no "wait operation" is programmed in a function block, so that the ISaGRAF cycle
processing time does not exceed the max time allowed.

Declaring function block instances
A function block is an object which combines operations and static data. Below is the example of
the "R_TRIG" function block which detects the rising edge of a boolean expression. Here is the
functional description of the block:

Algorithm:
rising_edge = boolean_value and
not(previous_state);
previous_state = boolean_value;

Hidden data:
previous_state

boolean_value rising_edge

Input parameters: Output parameters:

R_TRIG

The hidden static variable "previous_state" is needed for the calculation of the edge. This
variable must be different for each use of the function block " TRIG" in the application. The
instances of the function blocks used in the ST language must be declared in the dictionary.
Because a function block has internal hidden data, each copy (instance) of a function block must
be identified by a unique name. Naming the type of block is made by using the library manager.
Naming the instances is made by using the dictionary editor.

Function blocks used in FBD language do not have to be declared, because the ISaGRAF FBD
editor automatically declares the instances of the used blocks. Function block instances
automatically declared by the FBD editor are always LOCAL to the edited program.

Adding a function block to the ISaGRAF library
The ISaGRAF Library Manager must be used to add a new "C" function block to the ISaGRAF
library in the Workbench. The "New" command of the "Files" menu is used, when the "C"
function blocks library is selected. When a new function block has been created, its technical
note must be written. The frame of the "C" source code for the new function block is automatically
generated by the ISaGRAF Library Manager. The "Parameters" command of the "Edit" menu is
used to define the calling and return parameters of the new function block.

Using a "C" function block in an ISaGRAF project
Any integrated "C" function block can be used in the programs of an ISaGRAF project. "C"
function blocks can be called from ST and FBD languages.

Calling a "C" function block from the ST language follows the function block calling conventions of
the language. The calling parameters of the block are written after the name of the function,
between parentheses, and separated by commas. The return parameters are accessed one by
one. Each return parameter is represented by a name, combining the name of the block instance,
and the name of the parameters. The components of the name are separated by a dot. For
example, the name:

FBINSTNAME.parname

is used to represent the return parameter named "parname", of the function block instance
named "FBINSTNAME".

The instances of the function blocks used in the ST language must be declared in the dictionary.
Each copy (instance) of a function block must be identified by a unique name. Below is an
example of instance declaration in the ISaGRAF dictionary:

instance: TRIG1 type: R_TRIG
TRIG2 R_TRIG

And below is an example using these declared instances in an ST program:

TRIG1 (boo_input1);
TRIG2 (boo_input2);
Command := (TRIG1.Q & TRIG2.Q);

An FBD program can call any "C" function block. A function block is used as a standard function
box. Its calling parameters are connected to the left hand side of the function box. Its return
parameters are connected to the right hand side of the box. A standard format for a function box
appears as follows:

{ }Calling
parameters

Return
parameters

XXX

Name of the function block

Function blocks used in FBD language do not have to be declared, because the ISaGRAF FBD
editor automatically declares the instances of the used blocks. Function block instances
automatically declared by the FBD editor are always LOCAL to the edited program. Below is the
previous example, programmed in FBD language:

boo_input1

boo_input2

r_trig

CLK Q

r_trig

CLK Q

&

Command

Defining the interface of a "C" function block
The "Parameters" command of the "Edit" menu is used to define the calling and return
parameters of a new function block. A function block can have up to 32 parameters, freely
arranged as calling or return parameters. Unlike a "C" function, a function block may have several
return parameters.

The list in the upper side of the window shows the parameters of the "C" function block, based on
the order of the function calling prototype: first the calling parameters, then return parameters. The
lower part of the window shows the detailed description of the parameter currently selected in the
list:
- the name of the parameter
- the direction (call/return) of the parameter
- the type of the parameter

Any of the ISaGRAF data types may be used for a parameter: Boolean, Integer analog, Real
analog, Timer or Message. Integer and real analogs must be distinguished. Below is the
relationship between ISaGRAF types and "C" types:

BOOLEAN unsigned long unsigned 32 bit word: 1=true / 0=false
ANALOG long signed integer 32 bit word
REAL float single precision floating value
TIMER unsigned long unsigned integer 32 bit word (unit is 1 millisecond)
MESSAGE char * character string.

When a message value is passed onto a "C" function, it cannot contain null characters. The string
passed to the "C" code is null-terminated. Do not forget that return parameters must be the last
ones in the list. The rules shown below must be followed while naming parameters:
- the length of the name cannot exceed 16 characters
- the first character must be a letter
- the following characters must be letters, digits or '_' character
- naming is case insensitive

The same name cannot be used for more than one parameter of the function block. A calling
parameter cannot have the same name as a return parameter. The same name can be used for
parameters of different function blocks. The name of a parameter is used to identify the parameter
in the "C" source code.

The "Insert" command is used to insert a new parameter before the selected parameter. The
"Delete" command is used to erase the selected parameter. The "Arrange" command
automatically rearranges (sorts) the parameters, so that the return parameters are put at the end
of the list. Pressing the "OK" button stores the definition of the function block interface and closes
the dialog box. Pressing the "Cancel" button closes the dialog box, without changing the definition
of the function block.

Function block "C" interface
The interface of a function block depends on the definition of its parameters. Calling parameters
are passed through a structure. This structure is defined in the "GRFB0nnn.H" file, where "nnn"
is the logical number of the function block in the ISaGRAF library. Return parameters are
represented by logical numbers, which are also defined in the "GRFB0nnn.h" file. This is an
example of the "C" interface, for the "LIM_ALRM" function block (alarm on limits):

/* function block interface - name: sample */

/* standard ISaGRAF data types */

typedef long T_BOO;
typedef long T_ANA;
typedef float T_REAL;
typedef long T_TMR;
typedef char *T_MSG;

/* structure of calling parameters */

typedef struct {
/* CALL */ T_BOO _par1;
/* CALL */ T_BOO _par2;

} str_arg;

/* access to fields of str_arg structure */

#define PAR1 (arg->_par1)
#define PAR2 (arg->_par2)

/* return parameter logical numbers */

#define FBLPNO_Q1 0
#define FBLPNO_Q2 1

/* end of file */

The relationship between ISaGRAF types and "C" types is shown below. The ISaGRAF types are
defined as "C" types in the definition file of the function.

boolean T_BOO long (32 bits)
analog T_ANA long
real T_REAL float (32 bits - single precision)
timer T_TMR long
message T_MSG char * (32 bits - char pointer)

Each field of the "str_arg" structure corresponds to one calling parameter of the function block.
The parameters appear in the structure in the same order than the one established for the function
block definition. An uppercase identifier is defined to directly have access to one parameter of the
structure passed to the "C" implementation of the function block activation service. Names of the
identifiers are the ones entered during the definition of the function block with the ISaGRAF
Library Manager.

The order used for return parameters numbering is the one established for the function block
definition. The logical number of the first return parameter is always 0.

Defined identifiers should be used instead of numerical value to represent the return parameters in
the "C" source programming. This ensures that the source file can be easily re-compiled after a
modification of the interface definition.

The "C" definition file is updated each time the interface of the function block is changed by using
the ISaGRAF Library Manager. This ensures a complete coherence between the implementation
of the function block and its use in the programs of the ISaGRAF applications.

Source code
The "C" language implementation of a function block is divided into three different entry points:

q initialization service
q activation service - processing of the calling parameters
q return parameters read service

The same code is used for each instance of a same function block, and is not duplicated. A static
data structure is associated to each instance. Such data cannot be accessed directly by the
ISaGRAF programming, and contain the function block instance "hidden variables".

The "activation service" is called once for each instance of each used block, on each target cycle.
It processes the calling parameters, and updates the associated data. It represents the "main
algorithm" of the function block.

The "read service" is called by the ISaGRAF kernel to read the current value of one return
parameter for one instance. No special calculation has to be performed in such a service. It only
operates transfer between hidden data and the ISaGRAF application.

Functional diagram:

activate

Hidden data:

Calling
parameters

Return
parameters

Function block implementation

read

Initialize

(Allocate)

• Function block static data
A function block associates operations and static data. A data structure is associated to each
instance of a same function block. Each time a function block is used in ST or FBD programming,
it corresponds to one instance, and one data structure. The following example shows the
correspondence between "C" data structures and the function block instances used in an FBD
program:

R_TRIG

R_TRIG

GATE

R_TRIG "C" code

GATE "C" code

R_TRIG "C" data
instance 1

R_TRIG "C" data
instance 2

GATE "C" data
instance 1

"C" implementationFBD program

The memory needed for data structure of each instance is allocated by the ISaGRAF system,
when the application starts. A pointer to the associated instance data structure is passed to the
"activate" and "read" services.

The ISaGRAF Library Manager automatically generates the frame of the "C" source code for data
structure type definition. The type of the data structure is always called "str_data". The
programmer should not change this name, to ensure compatibility with service headers. The
hidden data generally groups internal variables with an image of the return parameters. The
function block "read" service is only used to access the return parameter, and should not be used
to perform other operations.

• The initialization service
The "initialize" service of a function block is called by the ISaGRAF kernel when the application
starts. It allows the "C" programmer to ask the system to allocate memory for an instance. Below
is the standard programming of the initialization service:

uint16 FBINIT_xxx (uint16 hinstance)
/* "xxx" is the name of the f. block */
{
 return (sizeof (str_data));
}

The "hinstance" argument is the logical number of the instance. It is reserved for ISaGRAF
internal operations, and should not be used in the programming of the service. The initialization
service returns the number of memory bytes required for the data of one instance. The amount of
required memory (return value) cannot exceed 64 Kbytes. No other operation should be performed
in this service. The "C" source code of this service is automatically generated by the ISaGRAF
Library Manager when the function block is created.

• The activation service
The "activation" service is called on each target cycle, for each function block instance used in the
application. This service processes the calling parameters and runs the main function block
algorithm, in order to update the hidden static data and the value of return parameters. Below is
the standard frame of the activation service:

void FBACT_xxx (

uint16 hinstance, /* "xxx" is the name of the function block */
/* logical number of the instance */

str_data *data, /* data: pointer to the instance data structure
*/
str_arg *arg /* pointer to the calling parameters structure
*/
)
{
}

The "hinstance" argument is the logical number of the instance. It is reserved for ISaGRAF
internal operations, and should not be used in the programming of the service. The "data"
argument is a far pointer to the data structure associated to the instance. The "arg" argument is a
far pointer to the structure which contains the value of the calling parameters. The programmer
should use the identifiers defined in the function block "C" header to have access to the fields of
the "arg" structure.

The "activation" algorithm processes the calling parameters (stored in "arg" structure), and
updates the fields of the "data" structure. The following

example shows the "activation" service of the TRIG (rising edge detection) function block:

/* definitions stored in the function block "C" header */

typedef struct { /* calling parameters */
T_BOO _clk; /* trigger input */

} str_arg;

#define CLK (arg->_clk)

/* function block instance data structure */

typedef struct {
T_BOO prev_state; /* previous state of the trigger input */
T_BOO edge_detect; /* edge value: image of return param */

} str_data;

/* activation service */

void FBACT_trig (uint16 hinstance, str_data *data, str_arg *arg)
{

data->edge_detect = (T_BOO)(CLK && !data->prev_state);
data->prev_state = CLK; /* calling parameter */

}

The "C" source code frame of this service is automatically generated by the ISaGRAF Library
Manager when the function block is created.

• Reading the return parameters
The "read" service is called each time a return parameter of a function block instance is
referenced in an ST or FBD program. It is used to get the value of one return parameter. The
following example shows the "read" calls executed while running an ST program:

(* ST programming *)

(* FB1 is a declared instance
of the SAMPLE function block *)

FB1(high, value, low, 1.0);

high_alarm := FB1.QH;
low_alarm := FB1.QL;
any_alarm := FB1.Q;

"C" implementation

ACTIVATE
service

READ
service

INSTANCE
DATA

Because the "read" service can be called more than once in the same cycle, for the same return
parameter or the same function block instance, no special calculation has to be performed in such
a service. It only operates transfer between hidden data and the ISaGRAF application. Below is
the standard frame of the read service:

/* cast operation used to copy the value of a return parameter */

#define BOO_VALUE ((T_BOO *)value)
#define ANA_VALUE ((T_ANA *)value)
#define REAL_VALUE ((T_REAL *)value)
#define TMR_VALUE ((T_TMR *)value)
#define MSG_VALUE ((T_MSG *)value)

/* return parameters read service: called for each return parameter */

void FBREAD_xxx (/* "xxx" is the name of the function block */
uint16 hinstance, /* logical number of the instance */
str_data *data, /* pointer to the instance data structure */
uint16 parno, /* logical number of read parameter */
void *value) /* buffer where to copy the value of the param
*/
{

switch (parno) {

 case FBLPNO_XX: /* ... */ break;
 case FBLPNO_YY: /* ... */ break;
 /* */
}

}

The "hinstance" argument is the logical number of the instance. It is reserved for ISaGRAF
internal operations, and should not be used in the programming of the service. The "data"
argument is a far pointer to the data structure associated to the instance.

The "parno" argument is the logical number of the return parameter which value is required. Use
the identifiers defined in the function block "C" header to identify return parameters. Such
identifiers begin with the "FBLPNO_" prefix. The "value" argument is a far pointer to the buffer
where to copy the current value of the accessed return parameter. The type of data pointed to by
this argument depends on the ISaGRAF type of the return parameter. The following table gives
the relationship between ISaGRAF types and buffer "C" data type:

boolean long 32 bit unsigned word (0=false / 1=true)
analog long 32 bit signed word
real float 32 bit single precision floating value
timer long 32 bit unsigned word (unit is 1ms)
message char * array of characters

The following macros are used to have access to the copy buffer, according to the type of the
accessed return parameter:

#define BOO_VALUE ((T_BOO *)value)
#define ANA_VALUE ((T_ANA *)value)
#define REAL_VALUE ((T_REAL *)value)
#define TMR_VALUE ((T_TMR *)value)
#define MSG_VALUE ((T_MSG *)value)

These are commonly used programmed operations to copy the value or the parameter to the
ISaGRAF buffer:

/* for a boolean parameter: */
 *BOO_VALUE = parameter_value;
/* for an integer analog parameter: */
 *ANA_VALUE = parameter_value;
/* for a real integer parameter: */
 *REAL_VALUE = parameter_value;
/* for a time parameter: */
 *TMR_VALUE = parameter_value;
/* for a string parameter: */
 strcpy (*MSG_VALUE, parameter_value);

The "C" source code frame of this service is automatically generated by the ISaGRAF Library
Manager when the function block is created.

• Example of "C" source file
Below is the standard frame of a "C" function block implementation:

/* function block (xxx is the name of the function block) */

#include <tasy0def.h>
#include <grfb0nnn.h> /* nnn is the number of the f.block in library */

/* structure of hidden data for each instance of the block */
typedef struct {

/* fields definition */
} str_data;

/* initialization service: returns the size of needed hidden data */
word FBINIT_xxx (uint16 hinstance)
{

return (sizeof (str_data));
}

/* activation service: processes the calling parameters */
void FBACT_xxx (uint16 hinstance, str_data *data, str_arg *arg)
{

/* ... */
}

/* cast operation used to copy the value of a return parameter */
#define BOO_VALUE ((T_BOO *)value)
#define ANA_VALUE ((T_ANA *)value)
#define REAL_VALUE ((T_REAL *)value)
#define TMR_VALUE ((T_TMR *)value)
#define MSG_VALUE ((T_MSG *)value)

/* return parameters read service: called for each return parameter */
void FBREAD_xxx (uint16 hinstance, str_data *data, uint16 parno, void *value)
{

switch(parno)
{
 case FBLPNO_XX: *???_VALUE = ...; break;

 case FBLPNO_YY: *???_VALUE = ...; break;
....

}

/* The following function is used for the initialization of the function block and
the declaration of its implementation. It realizes the link with the ISaGRAF
kernel, using the name of the function block. This service is completely generated
by the ISaGRAF Library Manager. */

ABP fbldef_xxx (char *name, IBP *initproc, RBP *readproc)
{

strcpy (name, "XXX");
*initproc = (IBP)FBINIT_xxx;
*readproc = (RBP)FBREAD_xxx;
return ((ABP)FBACT_xxx);

}

/* end of file */

The "TASY0DEF.H" include file from the ISaGRAF kernel is required for system dependent
definitions. It also contains the definition of data types representing far pointers to the implemented
services.

Links between projects and "C" implementation
The logical link between the implementation of a "C" function block and its use in the programs of
an ISaGRAF project is accomplished by using the name of the function. A "declaration" service is
added to the "C" source code of the function block. This service is called only once when the
application starts, and indicates to the ISaGRAF kernel the "C" function block name which
corresponds to the implemented services. This is the standard format of such a declaration
service:

ABP fbldef_xxx (char *name, IBP *initproc, RBP *readproc)
{

strcpy (name, "XXX"); /* name of the f.block */
initproc = (IBP)FBINIT_xxx; / initialization service */
readproc = (RBP)FBREAD_xxx; / read service */
return ((ABP)FBACT_xxx); /* activation service */

}
/* xxx is the name of the function block */

The name of the function block, used for strcpy statement must be written in uppercase.
Lowercase must be used for the name of the implemented services and in the name of the
declaration service.

Using the "FBACT_", "FBINIT_", "FBREAD_" and "fbldef_" prefixes for implemented services
and definition service enables the user to name a function block with a reserved keyword of the
"C" language, or the name of an existing function of the "C" ISaGRAF libraries. No other
statement should be added to the declaration service.

The declaration service is called for any integrated "C" function block, even if it is not used in the
programs of the ISaGRAF application. The ISaGRAF kernel will detect a fatal error if a "C"
function block used in the application is not integrated to the kernel.

Before linking new function blocks with the kernel, the user must write another "C" source file,
named "GRFB0LIB.C", and insert it (with the retained function blocks) in the list of files for the
link. The "GRFB0LIB.C" only contains an array of declaration services. This array is read during
application initializations, to create a dynamic link with the "C" written function blocks. This is an
example of such a file:

/* File: grfb0lib.c - implemented function blocks */

#include <tasy0def.h>

extern ABP fbldef_fb1(char *name, IBP *init, RBP *read);
extern ABP fbldef_fb2(char *name, IBP *init, RBP *read);

FBL_LIST FBLDEF[] = {
fbldef_fb1,
fbldef_fb2,

NULL };

/* end of file */

The FBLDEF array must be terminated by a NULL pointer. Some clashes may occur when this
condition is not met. Unresolved references will occur when linking the new ISaGRAF kernel if the
FBLDEF array is not defined.

By writing this file, a new kernel can be built, including all the existing function blocks. A kernel
dedicated to one project can also be built, by inserting in the FBLDEF array only the function
blocks used in the project. The "GRFB0LIB.C" file is automatically generated by the ISaGRAF
Code Generator, when the code of an application is built. The file is placed in the ISaGRAF
project directory, and groups only the function blocks used in the project.

Limits

The ISaGRAF library may contain up to 255 "C" function blocks. Any type of operation may be
processed in a function. Each type of function block may be copied (instanced) up to 255 times in
the same project.

It should be remembered that the function block services are called in the ISaGRAF cycle,
synchronously, so that the execution of the function block has a direct effect on the cycle timing.

Complete example
Below is the complete programming of a "sample" function block, which is an up-counter.

Below is the technical note of the function block:

name: SAMPLE
description: Up counter

creation date: 01 February 1994
author: CJ international

call: CU : counting input
R : reset command
PV : maximum programmed value

return: Q : max detection
CV : counting result

prototype: SAMPLE (count, reset_command, maximum_value);
max_detect := SAMPLE.Q;
count_result := SAMPLE.CV;

Below is the interface of the function block:

Below is the "C" source header of the function block:

/* function block interface - name: SAMPLE */

/* definition of standard ISaGRAF data types */

typedef long T_BOO;
typedef long T_ANA;
typedef float T_REAL;
typedef long T_TMR;

typedef char *T_MSG;

/* definition of the calling parameters structure */

typedef struct {
 T_BOO _cu;
 T_BOO _r;
 T_ANA _pv;
} str_arg;

/* identifiers used to access the calling parameters */

#define CU (arg->_cu)
#define R (arg->_r)
#define PV (arg->_pv)

/* return parameters logical numbering */

#define FBLPNO_Q 0
#define FBLPNO_CV 1

/* end of file */

Below is the "C" source code of the function block. Only the lines printed with bold characters
were manually entered by the C programmer.

/* function block - name: SAMPLE */

#include <tasy0def.h> /* required for data types definition */
#include <grfb0255.h> /* function block C source header */

/* definition of the structure which contains the data for one instance */

typedef struct {
T_BOO overflow; /* true:counting value >= programmed value */
T_ANA value; /* counting current value */

} str_data;

/* initialization service: requires memory for instance data */

word FBINIT_sample (uint16 hinstance)

{
return (sizeof (str_data));

}

/* activation service: up-counting algorithm */

void FBACT_sample (uint16 hinstance, str_data *data, str_arg *arg)
{

if (R) data->value = 0;
else if (CU && data->value < PV) (data->value)++;
data->overflow = (data->value >= PV) ? (T_BOO)1 : (T_BOO)0;

}

/* cast operation required to copy parameters to ISaGRAF buffer */

#define BOO_VALUE ((T_BOO *)value)
#define ANA_VALUE ((T_ANA *)value)
#define REAL_VALUE ((T_REAL *)value)
#define TMR_VALUE ((T_TMR *)value)
#define MSG_VALUE ((T_MSG *)value)

/* read service: get the value of one return parameter */

void FBREAD_sample (uint16 hinstance, str_data *data, uint16 parno, void
*value)
{

switch (parno) {
 case FBLPNO_Q : *BOO_VALUE = data->overflow; break;
 case FBLPNO_CV : *ANA_VALUE = data->value; break;
}

}

/* declaration service used for dynamic link with the ISaGRAF kernel */

ABP fbldef_sample (char *name, IBP *initproc, RBP *readproc)
{

strcpy (name, "SAMPLE");
*initproc = (IBP)FBINIT_sample;
*readproc = (RBP)FBREAD_sample;
return ((ABP)FBACT_sample);

}

/* end of file */

C.7.5 Compiling and linking techniques

The ISaGRAF Workbench does not include any "C" compiler or linker. However this chapter
explains the main techniques which can be applied to easily use the files created by the ISaGRAF
Library Manager, and pass them to other tools such as compilers and linkers.

"C" source files
The "C" source files of conversions, functions and function blocks are put by the ISaGRAF
Library Manager into the ISAWIN\LIB\DEFS and ISAWIN\LIB\SRC directories. The name of a
source file is built with the number of the corresponding conversion, function or function block in
the ISaGRAF library. These are the used filenames:

\isawin\lib\defs\TACN0DEF.H definition file for any conversion functions
\isawin\lib\src\GRCN0nnn.H source file of a conversion function
\isawin\lib\defs\GRUS0nnn.H definition file of a function
\isawin\lib\src\GRUS0nnn.C source file of a function
\isawin\lib\defs\GRFB0nnn.H definition file of a function block
\isawin\lib\src\GRFB0nnn.C source file of a function block
(nnn is the number of the conversion, function or function block)

Warning: When renaming or copying library elements, its text and programming lines are not
updated by the ISaGRAF Library Manager, according to new element name and logical number.
They must be manually updated in the "C" source file.

The file \ISAWIN\LIB\USPNUMS gives the relationship between names and logical numbers for
the "C" functions existing in the ISaGRAF library. This is, as an example of such a file:

1 funct_A
10 funct_B
16 funct_C

The file \ISAWIN\LIB\FBLNUMS gives the relationship between names and logical numbers for
the "C" function blocks existing in the ISaGRAF library. This is as an example, of such a file:

0 fbl_A
1 fbl_B
2 fbl_C

The file \ISAWIN\LIB\CNVNUMS gives the relationship between names and logical numbers for
the conversion functions existing in the ISaGRAF library. This is, as an example, the content of
this file for the conversions of the standard library:

0 SCALE

1 BCD
These files are automatically updated by the ISaGRAF Library Manager each time a conversion,
function or function block is created, renamed, copied or deleted. The ISaGRAF Code Generator
automatically generates the following files when an application is built:

\isawin\apl\ppp\GRCN0LIB.C Declaration as an array of all the
conversion functions used in the project.

\isawin\apl\ppp\GRUS0LIB.C Declaration as an array of all the functions
used in the project.

\isawin\apl\ppp\GRFB0LIB.C Declaration as an array of all the function
blocks used in the project.

(ppp is the name of the ISaGRAF project)

These files can be used during link operations to build a new ISaGRAF kernel dedicated to the
project, which contains only the conversions, functions and function blocks used in the project.

Downloading source files to a native system
The "C" source and definition files created by the ISaGRAF Library Manager may be downloaded
to the target ISaGRAF system, if it supports a native compiling tool. To do that, the standard
TERMINAL tool delivered with Windows can be used.

When source files are managed on the target system, definition files have to be updated with a
new download operation each time a function interface is modified with the ISaGRAF Library
Manager.

Commands lines to download files can be grouped for instance into a batch file and then started
from the workbench tool menu (see user’s guide: Managing programs)

Using a cross compiler
Source files can also be managed directly on your PC, if the target is a PC, or a cross compiler is
available, running on the PC and generating code for the target system.

In this case, the user can run the ISaGRAF Library Manager to complete and modify the sources
of conversions, functions or function blocks.
Commands lines for running the compiler and the linker can be grouped for instance into a batch
file and then started from the workbench tool menu (see user’s guide: Managing programs)

When conversions, functions and function blocks are compiled on the PC, the user simply has to
download the new generated ISaGRAF kernel (linked with new components) to the target system
before running applications. If the target is another PC, the new generated ISaGRAF kernel can
be loaded into the target machine by using a diskette or through a network.

Linking with the ISaGRAF kernel libraries
Warning:
The following are general information which may not exactly correspond to your target system.
In any case you may consult the readme and .TXT files delivered on the target disk.

The ISaGRAF target diskette contains many utility files to compile and link the conversions,
functions and function blocks with the ISaGRAF kernel libraries.

Two implementations exists:
- single task ISaGRAF: all functions are performed in the same program
- multitask ISaGRAF: a separate task (or thread) is dedicated to communication

In either case, the "C" components are grouped in the same libraries: for the "C" programmer, no
difference is made for single task or multitask. For a single task version, the user "C" libraries are
linked to the single task (generally called isa), whereas for the multitask version the libraries are
linked to the kernel task (generally called isaker).

Development Target
system system

WORKBENCH KERNEL

USER "C"

SYSTEM

OEMCOM

The inner part of ISaGRAF software is independent of the hardware. It executes the IEC
languages and has its own variable data base.

The first step, when making the link with the kernel, is to build libraries of all the conversions,
functions and function blocks needed for the specific project:

Library content
ISAUSP - GRUS0LIB object file (array of declared functions)

- object file of each integrated function
ISAFBL - GRFB0LIB object file (array of declared function blocks)

- object file of each integrated function block
ISACNV - GRCN0LIB object file (array of declared conversions)

- object file of each integrated conversion function

Then the programmer has to link these new libraries with other object files and libraries of the
ISaGRAF kernel. The different phases of a user "C" development integration are outlined in the
following diagram:

grcn0lib.C grus0lib.C grfb0lib.C

grcn0nnn.C grus0nnn.C grfb0nnn.C

Library utility Library utility Library utility

isacnv isausp isafbl Other libraries

Link utility

isaker isa

This is the exact list of object modules and libraries which have to be joined during the link:

To build isaker:

Object Module: tast0mai
Object Module: tats0com

Kernel library: isaker
Kernel library: isaoem

User library: isausp user defined functions
User library: isafbl user defined function blocks
User library: isacnv user defined conversion functions

Kernel library: isasys

System libraries: (refer to your "C" compiler manual)

To build isa:

Object Module: tast0mai
Object Module: tast0com

Kernel library: isaker
Kernel library: isatst
Kernel library: isaoem

User library: isausp user defined functions
User library: isafbl user defined function blocks
User library: isacnv user defined conversion functions

Kernel library: isasys

System libraries: (refer to your "C" compiler manual)

The programmer may have to follow the exact order of object modules and libraries shown in the
preceding figures. Object modules and libraries have standard extensions (".lib", ".obj", ".l",
".r"...) according to the target system.

Required compiling and linking options
Convenient options can be selected during compiling and linking. They depend on the type of
operations processed in conversions, functions and function blocks. Some operations require
other system libraries (math, graphics...) during link.

All the "C" source files of the ISaGRAF Kernel have been compiled with the LARGE memory
model. The programmer must use the same model for compiling conversions, functions and
function blocks.

A special constant has to be defined for compiling "C" library components. It indicates the type of
target system and processors, so that the source of conversions, functions and function blocks
can be system independent. Below are the names of these constant values:

DOS for DOS based systems (INTEL processor)
ISAWNT for Windows-NT based systems (INTEL processor)
OS9 for OS9 system (MOTOROLA processor)
VxWorks.......... for VxWorks system (MOTOROLA processor)

The utility command files (to compile and link) delivered with the ISaGRAF target software show
how to define the convenient constant value in the compiler command line.

Supported compiler
The following compilers are supported for the development of conversions, functions and function
blocks, and the link with the ISaGRAF Kernel:

Microsoft MSC 7.00 compiler for DOS based targets
Microsoft MSVC 4.00 compiler for Windows-NT based targets
Microware ULTRA-C compiler for OS-9 targets
Tornado 1.0; GNU Toolkit 2.6 for VxWorks targets

Contact CJ International for using other compilers.

Summary
Below is the summary of the operations which have to be performed when developing a new
conversion, function or function block.

ð1. With the ISaGRAF Library Manager, create the new element: give it a name and a
comment text. The frame of the "C" source file is automatically generated.

ð2. With the ISaGRAF Library Manager, describe the interface (call and return
parameters), if the element is a function or a function block. The "C" source header
file is automatically generated.

ð3. With the ISaGRAF Library Manager, enter the text of the detailed technical note
(user's guide) of the element.

ð4. With the ISaGRAF Library Manager, complete the "C" source file, by entering the "C"
programming of the conversion, function or function block algorithm. The source code
of the element is now complete. Note that another editor may be used.

ð5. Select the "Show logical number" option of the Library Manager to know what
logical number is attached to the new element. This number is used in the pathnames
of the corresponding ".C" and ".H" source files.

ð6. Copy / Download the .C and .H files to your target (if native compiler) or to the
corresponding environment (if cross compiler) where the ISaGRAF target libraries
and tasks have been installed.

ð7. Run the "C" compiler on the new source file, and correct syntax errors if any.

ð8. Insert the name of the new element declaration service in the "GR??0LIB.C" source
file which defines the array of inserted elements.

ð9. Run the "C" compiler to compile the "GR??0LIB.C" file.

ð10. Insert the name of the object module in the list of object files used to build the
corresponding library.

ð11. Run the "C" library builder. Run the "C" linker to build the new kernel.

ð12. Install the new created kernel on your target machine.

ð13. Write a sample ISaGRAF application which tests the activation and the interface of
the new element.

C.8 Modbus link

Once the application is completely developed and tested, you may connect it to a process
visualization system.

ISaGRAF is an open system offering a large variety of networking possibilities.
The simplest industrial network is the MODBUS/MODICON standard protocol, which is available
on almost every process visualization system and which only requires a serial link (RS232,
RS485, Current Loop).

ISaGRAF communication debugger protocol is MODBUS compatible to enable variable read/write
access from a Modbus master.

C.8.1 MODBUS network and protocol

A Modbus network is composed of one master station only (usually a process visualization
system) and one or more slave stations (usually PLCs).

Master

Slave Slave Slave Slave

The master sends one request at a time to one slave (using its slave number) and waits for the
slave to answer before sending the next question. Other non concerned slaves do not answer.

Each frame contains a slave number, a request number and corresponding data, and a 16 bit
checksum (CRC).

If no answer is received after a time-out duration, the question can be repeated a certain number
of times before the master declares the slave 'disconnected'.
The time-out value and the number of retries have to be adjusted on the master station to fit the
slave requirements (depending on the application, etc...).

If an error occurs in a request processing, the slave may issue an error message instead of
sending the expected answer frame.

Modbus is a Modicon protocol but not an international standard, there are many different
implementations of 'Modbus' compatible protocols, with many possible differences, such as:

− List of implemented function codes
− Address mapping
− RTU (binary codes) or ASCII protocol
etc...

C.8.2 ISaGRAF implementation

Application Variables access
The ISaGRAF communication link recognizes five Modbus function codes:

1 read N bits
3 read N words
5 write 1 bit
6 write 1 word
16 write N words

ISaGRAF application variables can be accessed through their 'network address', if, of course,
they have been defined in the workbench dictionary. These variables can be:
− Boolean or Analog variables
− inputs, outputs or internal variables
− local or global variables.

To write a Boolean variable, either function 5, 6 or 16 may be used. A TRUE value for writing is
any non zero value.

To read a Boolean variable, either function 1 or 3 may be used. With the function 1, values are
retrieved in a bit field, with function 3, they are retrieved in Bytes (a TRUE value correspond to
0xFFFF).

To write an analog variable, either function 6 or 16 may be used. The value is a 16 bits integer
ranging from -32768 up to +32767 (ISaGRAF target variable are 32 bits).

To read an Analog variable, function 3 should be used. The read value is a 16 bits integer ranging
from -32768 up to +32767. On the target side, Analog variables are 32 bits, therefore a value, on
the target, over the 16 bits range (positive or negative) will be read with the maximum 16 bits range
value (positive or negative).

Real variables cannot be accessed with a Modbus request.

Warning:
The ISaGRAF implementation does not manage the error codes such as ‘unknown modbus
address’.

Notations:

slv slave number
nbw number of words

nbb number of bytes
nbi number of bits
addH network address (High Byte)
addL network address (Low Byte)
vH value (High Byte)
vL value (Low Byte)
V Byte Value
bfd Bit field (nbb Bytes)
crcH checksum (High Byte)
crcL checksum (Low byte)

FUNCTION 1: read N bits

Read nbi bits (Booleans) starting from network address addH/addL

Question slv 01 addH addL 00 nbi crcH crcL

Answer slv 01 nbb bfd ... crcH crcL
Byte 1 Byte nbb

bfd is a bit field of nbb Bytes with the following format:

Bit 1

Bit 9

Bit 8

Bit nbi

Byte 1

Byte 2

Byte nbb

Bit 1 correspond to the value of the variable at addH/addL network address.
Bit nbi correspond to the value of the variable at addH/addL + nbi -1 network address.
X means undefined value.

FUNCTION 3: read N words

Read nbw words starting from network address addH/addL

Question slv 03 addH addL 00 nbw crcH crcL

Answer slv 03 nbb vH vL ... crcH crcL

nbb corresponds to the number of vH, vL bytes

FUNCTION 5: write 1 bit

Write a bit (Boolean) at network address addH/addL

Question slv 05 addH addL vH 00 crcH crcL

Answer slv 05 addH addL vH 00 crcH crcL

FUNCTION 6: write 1 word

Write a word at network address addH/addL

Question slv 06 addH addL vH vL crcH crcL

Answer slv 06 addH addL vH vL crcH crcL

FUNCTION 16: write N words

Write nbw words starting from network address addH/addL (nbb = 2nbw)

Question slv 10 addH addL 00 nbw nbb vH vL ... crcH crcL

Answer slv 10 addH addL 00 nbw crcH crcL

Examples:

− Function 1: read 15 bits starting from network address 0x1020, on slave 1

Question 01 01 10 20 00 0F 79 04

Answer 01 01 02 00 12 39 F1

The value read is 0x0012, which gives 00000000 00010010 as a bit field.
In this example, variables 0x1029 and 0x102C are TRUE, all others are FALSE.

− Function 16: write 2 words at address 0x2100 on slave 1, values written are 0x1234 and
0x5678.

Question 01 10 21 00 00 02 04 12 34 56 78 1C CA

Answer 01 10 21 00 00 02 4B F4

File transfer
Compared to modern field buses, Modbus protocol offers very poor services if it is not extended by
specific manufacturers functions codes.

In our situation, running ISaGRAF on a powerful and flexible computer base, there are two
restrictions to the Modbus protocol:
− It is only possible to access ISaGRAF variables

− It is difficult to execute fast transfer of a large amount of data

These are the reasons why ISaGRAF offers a set of file transfer ‘Modbus like’ requests, or a
‘remote file management’ protocol. These features have been implemented to enable:
− Binary or ASCII file download
− Binary or ASCII file upload
− Dynamic data exchange through virtual or physical shared file

Thus, with the ISaGRAF communication link, any application « independent from ISaGRAF » can
easily communicate with a remote target.

The protocol is based on the following concepts:
− The file on the ISaGRAF target side is called remote file
− The file on the master computer is called local file
− Each byte in a file is accessed with a 32 bit base address plus a 16 bit byte address

There are requests to select the remote file name, to select the base address, to read or write data
of the remote file using the 16 bits byte address.

FUNCTION 17: write data

nbb correspond to the number of vH, vL bytes

Question slv 11 addH addL 00 nbb nbb vH vL ... crcH crcL

Answer slv 11 addH addL 00 nbb crcH crcL

The meaning of this request differs according to the address range addH/addL:

− 0xF000: Initialize remote file name
nbb correspond to the number of characters for the file name, specified in the vH vL fields (in
that case High and Low is not meaningful) and including \0 for end of string.
If the file does not exist, it is created with writable + readable + executable attributes.

− 0xF002: Change base address to the specified value
nbb should be equal to 4.The first vH/vL byte correspond to the High word of the specified
value. Any 32 bit value is accepted.
All future read or write requests will use this base address. When this request is not used the
default base address value is zero.

− 0xF004: Delete file
nbb should be equal to zero.
The file will be deleted if it exists and if it is possible.

− Greater than 0xF004: Reserved

− Less than 0xF000: Write bytes
The specified address where to write bytes is specified in addH/addL. It must be less than
F000. The specified bytes (nbb bytes specified in vH vL fields where High and Low may be no
more meaningful) are written, in the order given (from left to right), to the previously selected

remote file name. The start address written to, is the specified address added to the
previously selected base address. If the resulting addresses access exceed the current file
size, the file is extended. You cannot reduce the file size.

FUNCTION 18: read data

Question slv 12 addH addL 00 nbb crcH crcL

Answer slv 12 nbb V V ... crcH crcL

The specified address where to read bytes is specified in addH/addL. It must be less than F000.
Read the specified (nbb) number of bytes, from the previously selected remote file name, starting
from specified address (addH/addL with any 16 bits value) added to the previously selected base
address.
The Values are retrieved (V fields from left to right) in the order they are read in the file.

Example:

Select remote file name: 'target.fil'.

Question 01 11 F0 00 00 0B 0B 74 ... 00 25 9F

Answer 01 11 F0 00 00 0B 8F 0E

Select base address: 0x10000.

Question 01 11 F0 02 00 04 04 00 01 00 00 76 11

Answer 01 11 F0 02 00 04 6E CA

Write 4 bytes: absolute address 0x107D0, values 01,02,03,04.

Question 01 11 07 D0 00 04 04 01 02 03 04 28 6F

Answer 01 11 07 D0 00 04 FC 87

Read 4 bytes: absolute address 0x107D0.

Question 01 12 07 D0 00 04 B8 87

Answer 01 12 04 01 02 03 04 58 7D

C.9 Power fail management

C.9.1 Basics

Managing a power failure is something very critical in an application, for three reasons:
− It depends on the process specifications
− It depends on the hardware capabilities
− It depends on the programming methods

Thus, the ISaGRAF answer to the power failure management is not a complete and absolute
universal method, but a set of principles, methods and tools that have to be combined in a specific
way for each application, or at least hardware.

To enable a process control system to restart correctly after a power failure, 3 problems must be
solved:

ISaGRAF
Kernel

+
Data base

Backed up
memory

Back up

Restore

− Making a data backup
− Detecting that a power failure has occurred when starting
− Restoring the backed up data

The second problem cannot have a standard software solution, but the system supplier may
provide the necessary tools to have access to the hardware status from the ISaGRAF application
or from a C program.

Furthermore, the important thing is to decide what data have to be stored and retrieved. Let‘s
define 2 kinds of data:
− Application variables:

Such as process variables like number of items processed, date of the power failure, values of
application parameters, etc. ...
Such as program variables like counters, timers, intermediate values and flags.

− Program state:
Such as reference of active steps, status of each C program, etc. ...

These 2 cases are studied in the following chapters to see how ISaGRAF can answer.

C.9.2 Application variables backup

Retained variables
The workbench variable editor offers the possibility to select the ‘retain’ attribute for each internal
variable (non IO variable).

At the end of each target cycle, values of retained variables are copied to the specified memory
location. This memory location is generally a battery backed up RAM.

At start-up, if at least one variable has the "retained" attribute, ISaGRAF looks for the retained
variables:
− If the same application has run before, ISaGRAF recognizes the stored values and assigns

them to every ‘retained’ variables.
− If the previous application was a different one, or if no application has run before, ISaGRAF

recognizes that the ‘retained’ values are not valid, and resets all the ‘retained’ variables to null.

The specification of the memory area used to store the different types of variables is specified in
the workbench, in the Make menu: Application run time option ; retained variables.
The specified string must have the following format:

 boo_add , boo_size , ana_add , ana_size , tmr_add , tmr_size , msg_add , msg_size

with:
boo_add: Hexadecimal address used to store boolean variables. Need to be always different

from zero.
boo_size: Hexadecimal size, in bytes, available at this address. One byte per boolean variable to

store is required.

ana_add: Hexadecimal address used to store analog variables. Need to be always different from
zero.

ana_size: Hexadecimal size, in bytes, available at this address. Minimum of four bytes always
required plus four bytes per analog variable to store.

tmr_add: Hexadecimal address used to store timer variables. Need to be always different from
zero.

tmr_size: Hexadecimal size, in bytes, available at this address. Five bytes per timer variable to
store is required.

msg_add: Hexadecimal address used to store message variables. Need to be always different
from zero.

msg_size: Hexadecimal size, in bytes, available at this address. 256 bytes per message variable
to store is required.

Requirements:
− All fields of all types need to be specified even if you may not need to make a backup of all types

of variables. In such a case you need to specify a size of zero (except for analogs for which you
need to specify a size of four bytes) and any address different from zero, for the non required
type(s) of variables.

Example:
Let’s suppose that we need to make a backup of:

20 Booleans variables
0 Analog variable
0 Timer variable
3 Message variables

The backed up memory is located at Hexadecimal address 0xA2F200.
Let’s suppose that:

Booleans will be stored at address 0xA2F200 with the exact required size of 20 bytes.
Analogs minimum required size of 4 bytes will be stored at address 0xA2F214.
Timers dummy address will be 0xA2F200 and specified with a size of zero.
Messages will be stored at address 0x A2F218 with the exact required size of 256*3 bytes.

Then the workbench entered string should be:

A2F200,14,A2F214,4,A2F200,0,A2F218,300

SYSTEM function call
If most of the application variables need to be stored, then the facilities of the SYSTEM function
should be used to deal with a complete set of variables (for more information on the SYSTEM
function see the user’s guide). Note that here, the backup and the restoration are managed by the
programmer at application level.

First of all you need to define the memory backup location for a specified type of variable or all
types of variables:

<new_address> := SYSTEM(SYS_INITxxx,<address>);

where:
− <address> is the memory backup address location (16# value for Hexadecimal format). It must

be an even address, otherwise the operation fails.
− SYS_INITxxx can be:

∗ SYS_INITBOO to define memory backup location for all boolean variables.
∗ SYS_INITANA to define memory backup location for all analog variables.
∗ SYS_INITTMR to define memory backup location for all timer variables.
∗ SYS_INITALL to define memory backup location for all boolean, analog and timer variables.

− <new_address> gets the next free address, that is to say <address> + backed up variables size
(in bytes) according to SYS_INITxxx. This enable to check the required memory backup size. If
the operation has failed <new_address> gets zero.

Then you may ask for a backup. This procedure can be called at any time in the application, the
backup will be done at the end of the current cycle and once only. If the hardware delivers a
boolean input, or a C function to inform the user when the power fail arrives, and allows at least
one ISaGRAF cycle delay before crash down, the backup might only be made when the power fail
is detected:

<error> :=SYSTEM(SYS_SAVxxx,0);

where:
− SYS_SAVxxx can be:

∗ SYS_SAVBOO to ask for all boolean variables backup.

∗ SYS_SAVANA to ask for all analog variables backup.
∗ SYS_SAVTMR to ask for all timer variables backup.
∗ SYS_SAVALL to ask for all boolean, analog and timer variables backup.

− <error> gets an error status different from zero when operation has failed (SYS_INITxxx has not
been called).

Finally you may want to restore variables. This procedure can be called at any time in the
application, the restoration will be done at the end of the current cycle and once only. To ensure
the data backed up are valid, an analog variable should be set to a constant value used as a
signature:

<error> := SYSTEM(SYS_RESTxxx,0);
where:
− SYS_RESTxxx can be:

∗ SYS_RESTBOO to restore all boolean variables.
∗ SYS_RESTANA to restore all analog variables.
∗ SYS_RESTTMR to restore all timer variables.
∗ SYS_RESTALL to restore all boolean, analog and timer variables.

− <error> gets an error status different from zero when operation has failed (SYS_INITxxx has not
been done).

The following is a sum up of commands of the SYSTEM function to manage backup variables:

command Meaning
pre-defined keyword Value
SYS_INITBOO 16#20 init boolean back up
SYS_SAVBOO 16#21 save booleans
SYS_RESTBOO 16#22 restore booleans
SYS_INITANA 16#24 init analog back up
SYS_SAVANA 16#25 save analogs
SYS_RESTANA 16#26 restore analogs
SYS_INITTMR 16#28 init timer back up
SYS_SAVTMR 16#29 save timers
SYS_RESTTMR 16#2A restore timers
SYS_INITALL 16#2C init all types back up
SYS_SAVALL 16#2D save all types
SYS_RESTALL 16#2E restore all types

command (pre-defined keyword) Argument Return value
SYS_INITxxx memory address next free address
SYS_SAVxxx 0 zero if OK
SYS_RESTxxx 0 zero if OK

Customized implementation
Finally, using C functions or function blocks, you may develop specific user’s procedures to have
access to a battery backed up memory, to store and restore variables at any moment in the
application.

Examples:

1) Procedure dedicated to an application:
backup, restore_temp, restore_date, restore_cpt would be C user’s procedures.

backup(temperature, date, cnt); store 3 critical data

temperature := restore_temp(); restore temperature
date := restore_date(); restore date
cnt := restore_cnt(); restore counter

2) General purpose procedures:
backup_init, backup, backup_link, restore would be C user’s procedures.

save_id := backup_init(address, size); allocate a memory backed up array.
backup(save_id, cpt1, 3); save cpt1 as the 3rd element.

rest_id := backup_link(address, size) link backed up memory.
cpt1 := restore(rest_id, 3); restore backed up value of cpt1.

C.9.3 Program state backup

It could be possible to store every state of every application program, but it seems dangerous to
restore every program in the state it was at the last backup, for at least 3 reasons:

− Some processes require specific operations before restarting
− Dealing with every status of a complete application is tedious
− Some external resources such as C programs, peripherals, etc. cannot be automatically

restarted

The best solution seems to backup analog or boolean variables to describe the status of the
process when the programmer thinks the restart stages will be able to use these information.
Then it should be possible from an uncompleted but intelligent 'image' of the process to start, kill
or freeze SFC programs and to initialize variables to put the application in the adequate state. But
no automatic start up procedure can be provided by ISaGRAF.

Example:

restore specified data

status = yy

init backup

power fail = false

save status

save all

power fail = true

restore only status

restore all

status = xx

C.10 Appendix: Error list and description

Error list:

Code Message Type
1 cannot allocate memory for run time data base system
2 incorrect application data base (Motorola/Intel) application
3 cannot allocate communication mailbox system
4 cannot link kernel data base system
5 time-out sending question to kernel system
6 time-out waiting answer from kernel system
7 cannot init communication system
8 cannot allocate memory for retained variables application
9 application stopped application
10 too many simultaneous N or P actions application
11 too many simultaneous setting actions application
12 too many simultaneous resetting actions application
13 unknown TIC instruction application
16 cannot answer read data request system
17 cannot answer write data request system
18 cannot answer debugger session request system
19 cannot answer modbus request system
20 cannot answer debugger application request system
21 cannot answer debugger system
23 unknown request code system
24 Ethernet communication error system
25 communication synchro error system
28 cannot allocate memory for application system
29 cannot allocate memory for application update system
30 unknown OEM key code application
31 cannot init boolean input board application
32 cannot init analog input board application
33 cannot init message input board application
34 cannot init boolean output board application
35 cannot init analog output board application
36 cannot init message output board application
37 cannot input boolean board application
38 cannot input analog board application
39 cannot input message board application
40 cannot output boolean output variable application
41 cannot output analog output variable application
42 cannot output message output variable application
43 cannot operate boolean variable application
44 cannot operate analog variable application
45 cannot operate message variable application

46 cannot open board application
47 cannot close board application
50 cannot overwrite boolean output variable program
51 cannot overwrite analog output variable program
52 cannot overwrite message output variable program
61 unknown system request code program
62 sampling period overflow program
63 user function not implemented application
64 integer divided by zero program
65 conversion function not implemented application
66 function block not implemented application
67 standard function not implemented application
68 real divided by zero program
69 invalid operate parameters application
72 application symbols cannot be modified application
73 cannot update: different set of boolean variables application
74 cannot update: different set of analog variables application
75 cannot update: different set of timer variables application
76 cannot update: different set of message variables application
77 cannot update: cannot find new application application

> 100 specific OEM error code, ask your supplier for more details

The 3 error types correspond to the different sources of trouble:

− System errors:
Such problems are probably due to target software or hardware, not to application setting or to
program execution.
Try a hard reset (power off) of your target, and try to run other applications.
These errors should be reported to your ISaGRAF support.

− Application errors:
Such problems are due to application parameters, size or content.
These errors should disappear when loading a known and previously validated application. If the
problem still appears, it becomes a system error as listed above.

− Program errors:
Such problems are due to a particular sequence of program.
These kind of error should disappear when the application is started in cycle by cycle mode, or
when the critical program is stopped.

Errors description:

1. cannot allocate memory for run time data base system

No memory available. Check the hardware.

2. incorrect application data base (Motorola/Intel) application

The application file, downloaded or backed up is not correct. This error appears if the application
is generated for INTEL and downloaded on MOTOROLA (and reverse) or if the file has been
altered.

3. cannot allocate communication mailbox system

This error is produced by the communication task if it cannot allocate space 3 for inter task
communication.

4. cannot link kernel data base system

This error is produced by the communication task if it cannot find a kernel running with the slave
number specified in its command line.

5. time-out sending question to kernel system

The communication task cannot send a request to the kernel. The kernel is probably not running
or busy.

6. time-out waiting answer from kernel system

The communication task cannot receive an answer from the kernel. The kernel is probably not
running or busy.

7. cannot init communication system

This warning is produced when the communication layer cannot initialize the physical link. This
warning is also displayed if no communication path is specified. This does not prevent the target
from running correctly, but it cannot communicate.

8. cannot allocate memory for retained variables application

ISaGRAF cannot manage retained variables. There may be two reasons for such a problem:
- the string passed as a parameter to the host target is not syntactically correct
- the size of memory specified for each block is not sufficient
You have to verify the syntax of your ‘retain variable’ parameter, and you can try with a reduced
number of retained variables.

9. application stopped application

This warning is produced every time the application is stopped from the debugger.

10. too many simultaneous N or P actions application

This error occurs if one of the target cycles has to execute too many non stored, pulse actions or
cyclic blocks. It is possible to locate the trouble in CC mode. The maximum number of
simultaneous actions is 2 + 4 per SFC program.

11. too many simultaneous setting actions application

This error occurs if one of the target cycles has to execute too many setting actions (executed
when a step becomes active). Proceed as mentioned above.

12. too many simultaneous resetting actions application

This error occurs if one of the target cycles has to execute too many resetting actions (executed
when a step is de-activated). Proceed as mentioned above.

13. unknown TIC instruction application

The kernel has detected something wrong in the application code (called Target Independent
Code), in a program. There are two possible explanations:
- an external program is probably writing into application code. Try to locate the crash in CC mode
and make sure no IO interface has wrong parameters.
- your target has a reduced set of instructions, and your application uses a non authorized
instruction or variable type.

16. cannot answer read data request system

A communication error is detected answering specific ISaGRAF Modbus request function code
18 (file read). Check connection and system configuration on both target and master sides.

17. cannot answer write data request system

A communication error is detected answering specific ISaGRAF Modbus request function code
17 (file write). Check connection and system configuration on both target and master sides.

18. cannot answer debugger session request system

A communication error is detected answering a debugger request. Check connection and system
configuration on both target and master sides.

19. cannot answer modbus request system

A communication error is detected answering a Modbus request. Check connection and system
configuration on both target and master sides.

20. cannot answer debugger application request system

A communication error is detected answering a debugger request. Check connection and system
configuration on both target and master sides.

21. cannot answer debugger system

A communication error is detected answering a debugger request. Check connection and system
configuration on both target and master sides.

23. unknown request code system

A debugger request makes no sense.

24. Ethernet communication error system

This appears each time the connection is closed when the debugger is closed: the system is
working OK. Otherwise it means that an Ethernet communication error is detected. Check
connection and system configuration on both target and master sides.
A second field is given, it can be:
1: error while sending or receiving
2: error while creating the socket
3: error while binding or listening the socket
4: error while accepting a new client

25. communication synchro error system

Bad synchronization between the communication task on the target and the master. Check
connection and system configuration (communication parameters) on both target and master
sides.

28. cannot allocate memory for application system

No memory available. Check the hardware, according to the size of the application.

29. cannot allocate memory for application update system

No memory available. Check the hardware, according to the size of the application.

30. unknown OEM key code application

The application is using a board which manufacturer code is not recognized by the target. Check
the I/O connection in the workbench and use 'VIRTUAL' attribute to locate the incorrect board.
Your workbench library may not correspond to your target version.

31. cannot init boolean input board application

A boolean input board init has failed. Check the I/O connection in the workbench and the
parameters of your boolean input boards.

32. cannot init analog input board application

An analog input board init has failed. Check the I/O connection in the workbench and the
parameters of your analog input boards.

33. cannot init message input board application

A message input board init has failed. Check the I/O connection in the workbench and the
parameters of your message input boards.

34. cannot init boolean output board application

A boolean output board init has failed. Check the I/O connection in the workbench and the
parameters of your boolean output boards.

35. cannot init analog output board application

An analog output board init has failed. Check the I/O connection in the workbench and the
parameters of your analog output boards.

36. cannot init message output board application

A message output board init has failed. Check the I/O connection in the workbench and the
parameters of your message output boards.

37. cannot input boolean board application

An error has been detected while refreshing a boolean input board. Check the I/O connection in
the workbench and board parameters.

38. cannot input analog board application

An error has been detected while refreshing an analog input board. Check the I/O connection in
the workbench as well as board parameters.

39. cannot input message board application

An error has been detected while refreshing a message input board. Check the I/O connection in
the workbench and board parameters.

40. cannot output boolean output variable application

An error has been detected while updating an output boolean variable. Check the I/O connection in
the workbench and board parameters.

41. cannot output analog output variable application

An error has been detected while updating an output analog variable. Check the I/O connection in
the workbench and board parameters.

42. cannot output message output variable application

An error has been detected while updating an output message variable. Check the I/O connection
in the workbench and board parameters.

43. cannot operate boolean variable application

An error has been detected executing an OPERATE call to a boolean variable. Verify your
OPERATE parameters and board user's note.

44. cannot operate analog variable application

An error has been detected executing an OPERATE call to a analog variable. Verify your
OPERATE parameters and board user's note.

45. cannot operate message variable application

An error has been detected executing an OPERATE call to a message variable. Verify your
OPERATE parameters and board user's note.

46. cannot open board application

The application is using a board reference which is unknown in the target. Check the I/O
connection in the workbench. Your workbench library may not correspond to your target version.

47. cannot close board application

The application is using a board reference which is unknown in the target. Check the I/O
connection in the workbench.

50. cannot overwrite boolean output variable program

Two SFC sequences are writing the same boolean output variable in the same target cycle. This
should be avoided to prevent hazardous behavior of the I/Os. In case of such a conflict, the priority
is given to the highest program in the hierarchy. If the two SFC programs are located at the same
level, the result is unpredictable.

51. cannot overwrite analog output variable program

Two SFC programs are writing the same analog output variable in the same target cycle. See
above comment.

52. cannot overwrite message output variable program

Two SFC programs are writing the same message output variable in the same target cycle. See
above comment.

61. unknown system request code program

A program is using the SYSTEM call with an invalid code.

62. sampling period overflow program

The target cycle period is longer than specified in the workbench menu.
On a multitasking system, this means that there is not enough CPU time to execute a cycle, even
if the ‘current cycle duration’ is less than the specified period.
On a single task system, this always means that there are too many operations in one of the target
cycle.

There are many possible ways to remove this warning:
− reduce the number of operations performed at the instant where the warning is detected.
− reduce number of tokens, of valid transitions, optimize complex processing, etc.
− reduce other tasks CPU load to give more time to ISaGRAF.
− reduce communication traffic to give more time to ISaGRAF.
− use dynamic cycle duration modification to adapt the cycle duration to different process stages.
− set cycle duration to zero to let the ISaGRAF kernel run as fast as possible, without any overflow

checking.

63. user function not implemented application

A program is using a C function which is unknown in the target. Your workbench library may not
correspond to your target version.

64. integer divided by zero program

A program tries to divide an integer analog by zero. Your application should prevent such an event
which may have unpredictable effects.
When this occurs, ISaGRAF places the maximum analog value as the result.
When the operand is negative, the result is inverted.

65. conversion function not implemented application

A program is using a C conversion function which is unknown in the target. Your workbench
library may not correspond to your target version.
When this occurs, ISaGRAF does not convert the value.

66. function block not implemented application

A program is using a C function block which is unknown in the target. Your workbench library may
not correspond to your target version.

67. standard function not implemented application

A program is using a function block which is unknown in the target, although it is supposed to be
available on most targets. Ask your supplier.

68. real divided by zero program

A program tries to divide a real analog by zero. Your application should prevent such an event
which may have unpredictable effects.
When this occurs, ISaGRAF places the maximum real analog value as the result.
When the operand is negative, the result is inverted.

69. invalid operate parameters application

Your application uses an OPERATE call with wrong parameters. This is normally filtered by the
compiler. It could be a timer parameter, or a variable which is not an input or output.

72. application symbols cannot be modified application

Trying to make an application update, the modified application cannot be started because the
symbols are different. One or more variables or instances of function blocks may have been
added, removed or modified, compared to the current application.

73. cannot update: different set of boolean variables application

The modified application cannot be started because some boolean variables have been added or
removed, compared to the current application.

74. cannot update: different set of analog variables application

The modified application cannot be started because some analog variables have been added or
removed, compared to the current application.

75. cannot update: different set of timer variables application

The modified application cannot be started because some timer variables have been added or
removed, compared to the current application.

76. cannot update: different set of message variables application

The modified application cannot be started because some message variables have been added or
removed, compared to the current application.

77. cannot update: cannot find new application application

The modified application cannot be found in memory, something wrong may have happened
during the download.

D. Glossary
Action List of statements or assignments executed when a step of an SFC program is

active.

Action (FC) Symbol of a Flow Chart diagram. An action represents a list of instructions to be
performed when the dynamic flow encounters the action symbol.

Activity of a
step

Attribute of a step which is marked by an SFC token. The actions attached to the
step are executed according to its activity.

Analog Type of variables. These are continuous integer or real variables.

Attribute Class of variables. Available variable attributes are internal, input or output.

Begin
section

Group of cyclic programs executed at the beginning of each target cycle.

Beginning
step

First step of the body of a macro step. A beginning step is not linked to any
preceding transition.

Boolean Type of variables. Such variables con only take true or false values.

Boolean
action

SFC action: a boolean variable is assigned with the activity signal of a step.

Breakpoint Mark placed by the user at debug time, on an SFC step or transition. The target
system stops when an SFC token is moved on a breakpoint.

C function Function written with the "C" language, called from the ISaGRAF programs (written
with other languages), in a synchronous way. C functions are delivered by CJ
International, or developed by the user.

C language High level literal language used to describe the computer operations, such as C
functions and conversion functions.

C source
code

Text file which contains the "C" source code of a function or a conversion function.

C source
header

Text file which contains the "C" definitions and types required for the programming
of a C function or a conversion function.

Cell Elementary area of the graphic matrix for graphic languages such as SFC, FBD or
LD.

Child SFC
program

SFC program controlled by another SFC program, called its father.

Clearing a Run time operation: all the tokens existing in the preceding steps are removed. A

transition token is created into each of the following steps.

Coil Graphic component of an LD program, used to represent the assignment of an
output variable.

Comment Text included in a program, having no impact on the execution of the program.

Comment
(SFC)

Text attached to an SFC step or transition, having no impact on the execution of
the program.

Common Range of defined words. Such objects can be used in any program of any project.

Condition
(for a
transition)

Boolean expression attached to an SFC transition. The transition cannot be cleared
when its condition is false.

Connector
(FC)

FC graphic component, which represents a link, from a point of the flow chart to a
FC action or test. The graphic symbol of a jump is an small circle, numbered with
the reference of the destination element.

Constant
expression

Literal expression used to describe a constant value. A constant expression is
dedicated to one type.

Contact Graphic component of an LD program. It represents the status of an input variable.

Conversion Filter attached to an input or output analog variable. The conversion is automatically
applied each time the variable is input or output.

Conversion
function

"C" written function which describes a conversion. Such a conversion can be
attached to any input or output analog variable.

Conversion
table

Set of points which defines a linear (by segment) conversion. Such a conversion
can be applied to any input or output analog variable.

Cross
references

Information calculated by the ISaGRAF workbench about the dictionary of
variables, and where those variables are used in a project.

Current
result (IL)

Result of an instruction in an IL program. The current result can be modified by an
instruction, or used to set a variable.

Cycle
timing

Duration of the target execution cycle.

Cycle to
cycle mode

Execution mode: in this mode, cycles are executed one by one, according to the
orders given by the user of the debugger.

Cyclic Attribute of a program which is always executed.

Decision
(FC)

(Also called test) Flow chart symbol attached to a boolean expression. The flow is
directed to either YES or NO symbol output depending on the state of the
expression.

Defined
word

Unique identifier used to replace any expression in a program.

Delayed
operation
(IL)

Operation of an IL program, executed when the "(" instruction occurs, later in the
program.

Diary Text file which contains all the notes about the changes made to one program.
Each note is completed with its editing date.

Dictionary Set of internal, input or output variables, and defined words, used in the programs
of one project.

Edge Change of a boolean variable. A rising edge means a change from false to true. A
falling edge means a change from true to false.

End section Group of cyclic programs executed at the end of each target cycle.

Ending step Last step of the body of an SFC macro step. An ending step is not linked to any
following transition.

Expression Set of operators and identifiers which represents the evaluation of a value.

Father SFC
program

SFC program which controls other SFC programs, called its children.

FBD Functional Block Diagram language.

FC Stand for "Flow Chart".

Flow Chart Graphical language used to design a flow. The chart consists in action to be
performed and decision allowing the selection between various paths in the flow.
The Flow Chart language enables the drawing of loops to be executed on
consecutive cycles

Function
block

Graphic component of the FBD language, which represents a standard elementary
function from the ISaGRAF libraries.

Functional
Block
Diagram

Graphic language: the equations are built with standard elementary blocks from the
ISaGRAF library, linked together in the diagram.

Global Range of variables or defined words. Such objects can be used in any program of
one project.

Hierarchy Architecture of a project, divided into several programs. The hierarchy tree
represents the links between father programs and children programs.

I/O board Hardware resource. An I/O board is characterized by a type and a direction (input
or output). The parameters of an I/O board are described into the ISaGRAF library.

I/O channel Single connection point of an I/O board. An I/O channel may receive one I/O
variable.

I/O
connection

Definition of the links between the variables of the application and the channels of
the boards existing on the target system.

I/O variable Variable connected to an input or output device. An I/O variable must be connected
on a channel of an I/O board.

Identifier Unique word used to represent a variable or a constant expression in the
programming.

IL Instruction List language.

Initial
situation

Set of the initial steps of an SFC program, which represents the context of the
program when it is started.

Initial step Special step of an SFC program, which is activated when the program starts.

Input Attribute of a variable. Such variables are linked to an input device.

Instruction Elementary operation of an IL program, entered on one line of text.

Instruction
List

Low level literal language, entered as a sequential list of elementary operations.

Integer Class of analog variables, stored in a signed integer 32 bit format.

Internal Attribute of a variable, which is not linked to an input or output device.

Jump to a
step

SFC graphic component, which represents a link, from a transition to a step. The
graphic symbol of a jump is an arrow, numbered with the reference of the
destination step.

Keyword Reserved word of the language.

Label (IL) Identifier put at the beginning of an IL instruction line, which identifies the
instruction, and can be used as an operand for the JMP operations.

Ladder
Diagram

Graphic language mixing contacts and coils, for the design of boolean equations.

LD Ladder Diagram language.

Level 1 of
the SFC

Main description of an SFC program. Level 1 groups the chart (steps and
transitions), and the attached comments.

Level 2 of
the SFC

Detailed description of an SFC program. It is the description of the actions within
the steps, and the boolean conditions attached to the transitions.

Library Set of hardware or software resources, which can be directly inserted in any
application.

Local Range of variables or defined words. Such objects can be used in only one
program of one project.

Locked I/O Input or output variable, disconnected logically from the corresponding I/O device,
by a "Lock" command sent by the user from the debugger.

Macro step SFC graphic component. A macro step is a unique group of steps and transitions,
represented as a unique symbol in the main chart, and described separately.

Matrix Logical division of the editing area into rectangular cells, while editing a graphic
language program.

Message Type of variable. Such variables contains variable-length character strings.

Modbus Master-Slave protocol. An ISaGRAF target system can be a Modbus slave for the
link with an external system (such as supervisory systems) in a complete
architecture.

Modifier (IL) Single character put at the end of an IL operation keyword, which modifies the
meaning of the operation.

Network
address

Optional hexadecimal address freely defined for each variable. This address is
used by the Modbus protocol when the target system is connected to an external
system.

Non-stored
action

SFC action: it is a list of statements, executed at each target cycle, when the
corresponding step is active.

OEM key
code (I/O
board)

Hexadecimal 16 bit code defined for each I/O board of the ISaGRAF library. The
OEM code identifies the supplier of the board.

OEM
parameter
(I/O board)

I/O board parameter, defined by the designer of the board. It can be a constant, or
a variable parameter entered by the user during the I/O connection.

Operand
(IL)

Variable or constant expression processed by an elementary IL instruction.

Operation
(IL)

Basic instruction of the IL language. An operation is generally associated to an
operand in an instruction.

Output Attribute of a variable. Such variables are linked to an output device of the target
machine.

Parameter
(C function)

Value given as an input to a "C" function. A parameter is characterized by a type.

Parameter
(I/O board)

User defined or constant parameter of a standard I/O board. A user defined
parameter is entered by the programmer during the I/O connection.

Parent
program

Program written in any language, which controls (calls) another non-SFC program,
called its sub-program.

Power rail Main left and right vertical rails at the extremities of an ladder diagram.

Program Basic programming unit in a project. A program is described with one language,
and is placed in the hierarchy architecture of the project.

Project Programming area, which groups all the information (programs, variables, target
code...) for one ISaGRAF application.

Pulse action SFC action: it is a list of statements executed only once when the corresponding
step is activated.

Range Set of programs that can use an object. Pre defined ISaGRAF ranges are
common, global and local.

Real Class of analog variables, stored in a floating IEEE single precision 32 bit format.

Real board I/O board physically connected to an I/O device on the target machine.

Real time
mode

Run time normal execution mode: the target cycles are triggered by the
programmed cycle timing.

Reference
number
(SFC)

Decimal number (from 1 to 65535) which identifies an SFC step or transition in an
SFC program.

Register (IL) Current result of an IL sequence.

Return
value
of a sub-
program

Value returned by a sub-program at the end of its execution. The return value is
used in the operations of the owner program.

Run time
error

Application error detected by the ISaGRAF target system at run time.

Section Group of programs executed with the same dynamic rules.

Separator Special character (or group of characters) used to separate the identifiers in a
literal language. A separator may represent an operation.

Sequential
Function
Chart

Graphic language: the process is described as a set of steps, linked by transitions.
Actions are attached to the steps. Transitions are detailed as boolean conditions.

Sequential
section

Group of the programs of a project. The execution of those programs follows the
dynamic rules of the SFC language.

SFC Sequential Function Chart language.

ST Structured Text language.

Statement Basic ST complete operation.

Step Basic graphic component of the SFC language. A step represents a steady
situation of the process, and is drawn as a square. A step is referenced by a
number. The activity of a step is used to control the execution of the corresponding
actions.

String Set of characters stored in a message variable.

Structured
Text

High level structured literal language, combining assignments, high level structures
such as If/Then/Else, and function calls.

Sub-
program

Program written with any language but SFC, and called by another program, called
its owner program.

Target ISaGRAF target machine, which supports the ISaGRAF kernel software.

Target cycle Set of the operations executed each time the ISaGRAF target system is activated.
The cycles are triggered with programmable cycle timing.

Technical
note

User's guide for an element of the ISaGRAF libraries (C function or function block,
conversion function or I/O board). The technical note is written by the designer of
the element.

Test (FC) (Also called decision) Flow chart symbol attached to a boolean expression. The
flow is directed to either YES or NO symbol output depending on the state of the
expression.

Timer Type of variables. Such variables contain time values, and can be automatically
refreshed by the ISaGRAF system at run time.

Token
(SFC)

Graphical marker used to show the active steps of an SFC program.

Toolbox Small child window of an graphic editing tool window, which groups the main
buttons for the selection of the graphic components.

Top level
program

Program put at the top of the hierarchy tree. A top level program is activated by the
system.

Transition Basic graphic SFC component. A transition represents the condition between
different SFC steps. A transition is referenced by a number. A boolean condition is
attached to each transition.

Type Class of variables which have the same format. Basic types are boolean, analog,
timer and message.

Validity of a
transition

Attribute of a transition. A transition is validated when all the preceding steps are
actives.

Variable Unique representation of elementary data which is processed in the programs of
project.

Virtual
board

I/O board which is not physically connected to an I/O device of the target machine.

E. General index
-, B-238
$ sequence, B-171
%, A-85, B-172
&, B-235
) operation (IL), B-229
*, B-239
/, B-239
:=, A-127
:= (ST assignment), B-214
+, B-237
<, B-243
<=, B-244
<>, B-246
=, B-246
=1, B-236
>, B-244
>=, B-245
>=1, B-236
1 gain, B-233

A
ABS, B-271
Absolute value, B-271
Access right, A-147
ACOS, B-275
Action, A-42, A-46, B-182, B-187, B-

192, B-193, D-409
Activate, A-102
Activity duration, B-178, B-220
Activity of a step, B-177, B-178, B-190,

B-220, D-409
Addition, B-237
Addition of messages, B-251
Alias, A-55
ANA, B-248
Analog, B-169, B-170, B-173, C-353, C-

354, D-409
AND, B-235

AND_MASK, B-240
AnyTarget, A-96
appli.tst, C-316, C-325, C-336, C-344
appli.x6m, C-325, C-336
appli.x8m, C-316, C-344
Application size, C-350
Application size limit, C-317
Arc cosine, B-275
Arc tangent, B-277
Archive, A-22, A-135, A-141, A-148
Archive drive, A-142
Archive file, A-142
ARCREATE, B-298
Argument, A-139
Array creation, B-298
Array reading, B-299
Array writing, B-299
ARREAD, B-299
ARWRITE, B-299
ASCII, B-289
Assignment, B-233
Assignment (in ST,

=), B-214
ATAN, B-277
Attribute, D-409
AVERAGE, B-265

B
Background picture, A-113
Backup, A-22, A-135, A-141, A-142, A-

148
Backup file unit (VxWorks), C-328, C-

331
Bargraph, A-113
Base, B-169
Baud rate, A-31
Begin, A-23, B-191
Begin section, D-409

Beginning step, A-34, A-36, B-182, D-
409

Binary selector, B-288
BinaryFile, A-95
Bit field, A-114
Bitmap, A-113
BLINK, B-269
Board, A-83, A-84
Board parameter, A-85, A-137
Board type, A-84
Body of a macro step, B-182
BOO, B-247
Boolean, A-76, B-173, D-409
Boolean action, A-39, B-182, D-409
Breakpoint, A-103, A-105, D-409
BY, B-218

C
C code, A-93, A-135
C compiler, C-352, C-381
C function, A-140, C-352, C-358, D-409
C function block, A-140, C-352
C language, C-352, C-354, C-356, C-

360, C-368, C-370, C-381, D-409
C source code, C-356, C-361, C-370, C-

381, D-409
C source header, C-354, C-360, C-368,

C-381, D-409
CAL operator (IL), B-231
CASE, B-216
Cat, B-251
Cell, D-409
Channel, A-84, A-85, A-86, A-137, A-

149
Channel comment, A-85
CHAR, B-289
Child, A-24, B-165
Child SFC program, B-190, D-409
Clearing a transition, B-189, D-410
CLKRATE, C-327
CMP, B-263
Code generation, A-28, A-90
Coil, A-49, A-58, B-202, D-410

Coil direct, B-204
Coil inverted, B-204
Coil negative, B-207
Coil positive, B-206
Coil reset, B-206
Coil set, B-205
Coil type, A-53
Comment, B-174, B-194, B-210, B-225,

D-410
Comment (SFC), B-177, B-178, D-410
Common, A-141, D-410
Communication, A-31, A-104, A-118,

A-153, C-314, C-318, C-319, C-320,
C-323, C-327, C-332, C-339, C-348,
C-350

Communication logical number, C-320,
C-321, C-331

Comparison, B-263
Compile, A-28, A-90, A-134, A-138
Compiler message, A-93
Compiler option, A-28, A-119
Compiler options, A-91
Compression, A-142
Condition, B-192
Condition (for a transition), B-187, B-

188, D-410
Connection, A-59, A-60
Connector, A-44, B-193, D-410
Constant expression, B-169, D-410
Contact, A-49, A-58, B-202, D-410
Contact direct, B-202
Contact inverted, B-203
Contact negative edge, B-203
Contact Positive edge, B-203
Contact type, A-53
Control panel, A-101
Convergence, A-33, A-35, B-179
Conversion, A-88, D-410
Conversion ASCII -> character, B-289
Conversion character -> ASCII, B-289
Conversion function, A-140, C-352, C-

353, D-410
Conversion table, A-88, A-89, D-410
Convert to boolean, B-247

Convert to integer, B-248
Convert to message, B-250
Convert to real, B-249
Convert to timer, B-250
Copy FBD, A-61
Copy FC, A-46
Copy LD, A-54
Copy library, A-134
Copy program, A-27
Copy SFC, A-36
Copy text, A-65
Copy variable, A-75
Corner, A-59
COS, B-277
Cosine, B-277
Counter down, B-259
Counter up, B-258
Counter up/down, B-260
Cross reference, A-99
Cross references, A-29, D-410
CTD, B-259
CTU, B-258
CTUD, B-260
Current result (IL), B-225, B-226, D-

410
Curve, A-113, A-114, A-117
Cut FBD, A-61
Cut FC, A-46
Cut LD, A-54
Cut SFC, A-36
Cut text, A-65
Cut variable, A-75
Cycle, A-129, B-164, B-168, C-312
Cycle profiler, A-124
Cycle time, C-317, C-326, C-337, C-346
Cycle timing, A-28, A-103, A-124, B-

252, C-354, C-358, C-365, D-410
Cycle to cycle, A-28, A-103
Cycle to cycle mode, D-410
Cyclic, B-164, D-410

D
DAY_TIME, B-297

DDE, A-109
DDE (NT target), C-344, C-348, C-350
Debug, A-30
Debug workspace, A-30
Debugger, A-101, A-121
Decimal, B-170
Decision, A-42, A-45, A-46, B-192, D-

411
Declaration, A-26, A-72
Defined word, A-72, A-76, B-175, D-

411
Delayed operation (IL), B-226, B-229,

D-411
DELETE, B-290
Delete board, A-84
Delete FBD, A-61
Delete FC, A-46
Delete LD, A-54
Delete library, A-134
Delete program, A-27
Delete SFC, A-36
Delete text, A-65
Deleted style, A-63
DERIVATE, B-268
Descriptor, A-19, A-29
Diagnosis, A-121
Diary, A-26, D-411
Dictionary, A-26, A-67, A-72, A-99, A-

139, C-354, C-365, D-411
Differentiation, B-268
Direct coil, B-204
Direct contact, B-202
Directly represented variable, A-85, B-

172
Directory, A-153
Disabled transition, B-189
Disk, A-12
Dissociate, A-115
Divergence, A-33, A-35, B-179
Divergence (FBD), B-197
Division, B-239
DO, B-217, B-218
Document, A-20, A-29, A-144
Download, A-102

Dump, A-110

E
Edge, D-411
Edge contact, B-203
Edit project descriptor, A-20
ELSE, B-215, B-216
ELSIF, B-215
Embedded source code, A-119
EN, A-50
Enabled transition, B-189
End, A-23, A-132, B-191
End of cycle control (VxWorks), C-328,

C-331
End section, D-411
END_CASE, B-216
END_FOR, B-218
END_IF, B-215
END_REPEAT, B-217
END_WHILE, B-217
Ending step, A-36, B-182, D-411
ENO, A-50
EPROM, C-325, C-336
EQ operator (IL), B-246
Error, A-93
Error message, A-70
Ethernet, A-31
Execute one cycle, A-103
Execution order, A-61
EXIT, B-219
Exit key (NT target), C-346
Exit key (on target), C-317
Exponent, B-272
Export, A-79
Export function, A-28
Export function block, A-28
Expression, D-411
EXPT, B-272

F
F_CLOSE, B-302
F_EOF, B-302

F_ROPEN, B-300
F_TRIG, B-256
F_WOPEN, B-301
FA_READ, B-304
FA_WRITE, B-305
FALSE, A-76, B-169
Father SFC program, B-190, D-411
FBD, A-57, B-196, C-359, C-367, D-

411
FBD comment, A-59
FBD editor, A-57, A-67
FC, A-42, B-191, D-411
FC comment, A-44
FC connector, A-44
FC editor, A-42
FC link, A-44
FC sub-program, A-24, B-193
FEDGE, B-213
File

end of file detection, B-302
File close, B-302
File open, B-300, B-301
File read, B-304, B-307
File write, B-305, B-309
Find, A-37, A-46, A-54, A-61, A-65, A-

70
FIND, B-291
Flow, A-44, B-191, B-193, B-195
Flow Chart, A-42, B-191, D-411
Flow Chart editor, A-42
FM_READ, B-307
FM_WRITE, B-309
Font, A-146
FOR, B-218
From, A-97
Function, A-23, A-26, A-134, A-138, B-

165
function block, B-212
Function block, A-23, A-26, A-50, A-58,

A-62, A-73, A-76, A-134, B-166, B-
196, C-365, D-411

Function block call in IL, B-231
Function block instance, C-365
Function call (ST), B-211

Function call in IL, B-230
Functional Block Diagram, B-196, D-

411

G
gain 1, B-233
Gallery, A-41
GE operator (IL), B-245
GFREEZE, B-190, B-222
GKILL, B-190, B-222
Global, B-171, D-411
Go to, A-37, A-46, A-65
Goto, A-130
Graphic, A-113, A-117
Greater or equal, B-245
Greater than, B-244
Grid, A-51
Group, A-13, A-21, A-115
GRST, B-190, B-223
GSTART, B-190, B-221
GSTATUS, B-190, B-223
GT operator (IL), B-244

H
Hierarchy, A-23, A-26, B-164, B-190,

D-411
History, A-20, A-29
HYSTER, B-266
Hysteresis, B-266, B-267

I
I/O, A-29, A-83, A-84, A-85, A-99, A-

103, A-122, A-135, A-136, A-137, A-
149, A-150

I/O board, A-137, D-412
I/O channel, D-412
I/O channel OPERATE, B-253
I/O complex equipment, A-136
I/O configuration, A-19, A-135
I/O connection, A-83, D-412
I/O specific, B-192, B-193

I/O variable, D-412
I/O wiring, A-29
Icon, A-114
Icons, A-13
Identifier, D-412
If, A-131
IF, B-194, B-215
IL, A-65, A-112, B-187, B-188, B-225,

D-412
IL editor, A-67
Import, A-79
Import function, A-27
Import function block, A-27
Initial situation, B-178, B-189, D-412
Initial step, B-178, B-189, D-412
Input, A-83, A-99, A-122, A-124, A-

137, B-168, D-412
INSERT, B-292
Insert coil, A-52
Insert contact, A-52
Insert FBD, A-62
Insert FBD element, A-59
Insert FC element, A-43
Insert file, A-65
Insert rung, A-53
Insert slot, A-83
Insert variable, A-38
Installation, A-12
Instance, A-73, A-76
Instruction, B-225, D-412
Instruction List, B-225, D-412
Integer, A-76, B-169, D-412
INTEGRAL, B-267
Interface, A-26, A-139
Internal, D-412
Inverted coil, B-204
Inverted contact, B-203
IO variable, C-353, C-354
Is equal, B-246
Is not equal, B-246
ISA task (OS9), C-318
ISA.EXE, C-314
ISA.O (VxWorks), C-327, C-328
isa_main, C-329, C-332

isa_register_slave, C-328
ISAGRAF.INI (NT target), C-338
ISAKER task (OS9), C-319
ISAKERET.O (VxWorks), C-327, C-

330
ISAKERSE.O (VxWorks), C-327, C-

330
ISAMOD (VxWorks), C-327
ISAMOD.EXE, C-314
ISANET task (OS9), C-320
ISASSR.O (VxWorks), C-327
ISATST task (OS9), C-319
ISAx0, C-324
ISAx1, C-315, C-324
ISAx1 (NT target), C-343
ISAx1 ·(VxWorks), C-335
ISAx2, C-324
ISAx3, C-324
ISAx4, C-324
ISAx5, C-324
ISAx6, C-316, C-324
ISAx6 (NT target), C-343
ISAx6 (VxWorks), C-335

J
JMP operator (IL), B-228
Jump, A-50, A-58, B-197, B-208
Jump to a step, A-34, B-179, D-412

K
Keyword, B-171, B-226, D-412

L
Label, A-58, A-130, B-197, B-208
Label (IL), B-225, D-412
Ladder Diagram, B-200, D-412
Language, A-24, B-167
LD, A-40, A-47, A-49, A-57, B-200, D-

412
LD editor, A-49
LD operator (IL), B-227

LE operator (IL), B-244
LEFT, B-293
Less or equal, B-244
Less than, B-243
Level 1 of the SFC, B-177, B-178, D-

412
Level 2, A-37, A-46
Level 2 of the SFC, B-182, D-413
Level of protection, A-147
Library, A-22, A-27, A-28, A-84, A-99,

A-123, A-133, A-141, C-352, D-413
Library manager, A-133, C-352, C-354,

C-358, C-366
LIM_ALRM, B-267
LIMIT, B-283
Link, A-31, A-59, A-60, A-104, A-118,

A-153, B-191, B-193, B-195
Link (FBD), B-197
Link (LD), B-200
Link (SFC), B-178
List of variables, A-110, A-112, A-115
Local, A-139, B-171, D-413
Lock, A-103, A-150
Locked I/O, D-413
LOG, B-273
Logarithm, B-273
LT operator (IL), B-243

M
Macro step, A-34, A-36, B-181, D-413
Make, A-28, A-90
Mask on integer bits (and), B-240
Mask on integer bits (not), B-242
Mask on integer bits (or), B-241
Mask on integer bits (xor), B-242
Matrix, D-413
MAX, B-283
Maximum, B-283
Memory, A-12
Message, A-76, A-110, B-170, B-174,

D-413
Message concatenation, B-251
Message length, B-294

Metafile, A-113
MID, B-294
MIN, B-282
Minimum, B-282
MLEN, B-294
MOD, B-284
Modbus, D-413
MODBUS, A-78, C-387
Modification tracking, A-63
Modified style, A-63
Modifier (IL), B-225, B-226, D-413
Modify variable, A-75
Modulo, B-284
Move board, A-83
Move FBD, A-60
Move FC, A-45
Move program, A-26
Move project, A-19
Move SFC, A-36
Move SpotLight, A-115
MSG, B-250
Multi-applications, C-324, C-335, C-

343
Multiplexer with 4 entries, B-285
Multiplexer with 8 entries, B-286
Multiplication, B-239
MUX4, B-285
MUX8, B-286

N
N qualifier, A-38
NE operator (IL), B-246
NEG, B-234
Negated link, A-59, A-60
Negation, B-234
Negation (FBD), B-198
Negative coil, B-207
Negative contact, B-203
Network address, A-74, A-75, A-78, D-

413
New function, A-25
New function block, A-25
New library element, A-133

New program, A-25
New project, A-19
New rung, A-51
New variable, A-75
Non stored, A-38
Non-stored action, B-184, D-413
Normal style, A-63
NOT, A-59, A-60
NOT_MASK, B-242
NT (protection key), A-14

O
ODD, B-287
OEM key code, A-137, D-413
OEM parameter, A-137
OEM parameter (I/O board), D-413
OF, B-216
Off-delay timing, B-262
On Line, A-30, A-101
On line modification, A-103, A-106
Open program, A-25, A-100
Open project, A-20
Operand (IL), B-225, B-226, D-413
OPERATE I/O channel, B-253
Operation (IL), B-225, B-226, D-413
Optimiser, A-92
OR, A-57, B-236
OR_MASK, B-241
OS-9 shell, C-326
Other program, A-68
Output, A-83, A-99, A-122, A-137, B-

168, D-413
Output window, A-70

P
P qualifier, A-38
P0 qualifier, A-39
P1 qualifier, A-39
Page, A-146
Parameter, A-26, A-139
Parameter (C function), C-359, D-414
Parameter (function block), C-367

Parameter (I/O board), D-414
Parent program, D-414
Parenthesis, B-211, B-225, B-226
Parity, A-31
Parity test odd/even, B-287
Password, A-20, A-87, A-134, A-147
Paste FBD, A-61
Paste FC, A-46
Paste LD, A-54
Paste SFC, A-36
Paste text, A-65
Paste variable, A-75
Point, A-88, A-89
Positive coil, B-206
Positive contact, B-203
POW, B-273
Power calculation, B-273
Power rail, A-49, A-50, A-57, B-200, D-

414
Print, A-20, A-29, A-74, A-128, A-144,

A-146
Print program, A-68
PrintTime, A-129
Priority, C-348
Priority level (NT target), C-342
Program, A-23, A-67, A-124, B-164, D-

414
Program comment, A-25
Program manager, A-23
Program syntax, A-67
Project, A-19, A-141, D-414
Project descriptor, A-20, A-29
Project document, A-20, A-29, A-144
Project group, A-21
Project list, A-19, A-21
Project manager, A-19
Project separators, A-19
PROM, C-325, C-336
Protection, A-20, A-87, A-134, A-147
Protection key, A-14
Protection level, A-147
Pulse, A-38
Pulse action, B-183, D-414
Pulse timing, B-262

Q
Quick LD, A-40, A-47, A-49
Quick LD editor, A-67

R
R (reset) operator (IL), B-228
R_TRIG, B-256
RAND, B-287
Random number, B-287
Range, A-72, A-74, D-414
Real, A-76, B-170, D-414
REAL, B-249
Real board, A-84, D-414
Real time, A-28, A-103
Real time mode, D-414
REDGE, B-212
Reference number, B-177, B-178, B-

179, B-182, D-414
Register (IL), B-225, D-414
Rename library, A-134
Renumber, A-37, A-46
REPEAT, B-194, B-217
Replace, A-37, A-46, A-54, A-61, A-65
REPLACE, B-295
Resize FC, A-45
Resize SpotLight, A-115
Resource, A-29, A-94
Resource definition file, A-94
Restore, A-22, A-135, A-141, A-142, A-

148
RET operator (IL), B-229
Retain, C-394
Return, A-50, A-58
RETURN, B-197, B-207, B-215
Return value, D-414
RIGHT, B-296
ROL, B-279
ROR, B-280
Rotation left, B-279
Rotation right, B-280
RS, B-255
Run time error, B-252, D-414

Rung, A-49, A-50, A-54, A-60
Rung comment, A-51, A-55
Rung label, A-52
Run-time, A-28
Run-time error, A-28, A-104

S
S (set) operator (IL), B-227
Save list, A-110
Scientific, B-170
Script, A-125, A-127
Section, A-23, D-414
SEL, B-288
Select FBD element, A-59
Select FC element, A-44
Select SpotLight, A-115
SEMA, B-257
SEMAPHORE, B-257
Separator, B-210, D-414
Sequential, A-23, B-164, B-177
Sequential Function Chart, B-177, D-

415
Sequential section, D-415
Serial link, A-31
Set coil, B-205
SFC, A-32, A-91, A-105, A-146, B-177,

C-359, D-415
SFC child, A-24, A-39, B-165
SFC editor, A-32, A-67
SFC evolution rules, B-189
SFC gallery, A-41
Shift left, B-281
Shift right, B-281
SHL, B-281
SHR, B-281
SIG_GEN, B-270
Signal generator, B-270
Simulator, A-30, A-122, A-124, A-125,

C-353, C-358, C-365
SIN, B-278
Sine, B-278

Slave number, A-31, C-314, C-318, C-
319, C-320, C-321, C-328, C-330, C-
339, C-347, C-350

SlavesLink, C-333
Slot, A-84, A-86
Sort, A-75
Source code, A-135
SpotLight, A-113
Spy, A-110, A-112, A-113
Spy variable, A-110
SQRT, B-274
Square root, B-274
SR, B-254
SSR[x][1].space, C-336
ST, A-40, A-65, A-112, B-210, C-359,

C-366, D-415
ST editor, A-67
ST operator (IL), B-227
Stack of integer analogs, B-264
STACKINT, B-264
Start, A-102
Statement, B-210, D-415
Step, A-32, A-37, A-105, B-177, D-415
Stop, A-102
String, B-170, D-415
String length, B-294
Structured Text, B-210, D-415
Style, A-63, A-115
Sub-program, A-24, B-165, B-186, B-

189, B-198, D-415
Sub-Program, B-193
Sub-program call (ST), B-211
Sub-program call in IL, B-230
Sub-string delete, B-290
Sub-string extraction (left), B-293
Sub-string extraction (middle), B-294
Sub-string extraction (right), B-296
Sub-string find, B-291
Sub-string insert, B-292
Sub-string replace, B-295
Subtraction, B-238
Symbol table, A-155
Symbols (application symbols), C-316
SYSTEM, B-252

System clock rate (VxWorks), C-327
SYSTEM function, C-395

T
Table of contents, A-144
TAN, B-279
Tangent, B-279
Target, A-91, A-96, D-415
Target architecture, C-313
Target cycle, D-415
Technical note, A-84, A-134, C-352, C-

354, C-359, C-366, D-415
Terminal mode, C-326
Test, A-42, A-45, A-46, A-101, A-122,

B-192, D-415
Text display, A-113
Text editor, A-65
TextFile, A-96
THEN, B-215
Time unit, B-170
Time-out, A-31
Timer, A-76, B-170, B-174, D-415
TMR, B-250
To, A-97
TO, B-218
TOF, B-262
Token (SFC), B-177, D-415
Toolbox, D-415
Tools menu, A-29
Top level, A-23
Top level program, D-415
Touch, A-28, A-90
TP, B-262
Transition, A-32, A-37, A-105, B-178,

D-415
TRUE, A-76, B-169
TRUNC, B-275
Truncate decimal part, B-275
TSK_FUNIT, C-328, C-331
TSK_NBTCKSCHED, C-328, C-331,

C-337
tst_main_ex, C-332
TSTART, B-220

TSTOP, B-221
Type, A-72, A-74, A-83, A-99, A-137,

B-169, D-416

U
ULongData, A-94
Unlock, A-103
UNTIL, B-217
Update, A-103
Upload, A-118
Upload (options), A-119
Upload (prepare), A-119

V
Validity of a transition, D-416
Variable, A-26, A-38, A-53, A-59, A-61,

A-65, A-72, A-99, A-104, A-139, A-
149, B-171, B-196, D-416

Variable name, B-171
VarList, A-95
Verify, A-28, A-90, A-138
Version number, A-102
Virtual board, A-84, A-150, D-416
Virtual boards (simulation with NT

target), C-348, C-350
Virtual boards (simulation with NT), C-

341

W
Wait, A-129
WHILE, B-194, B-217
WISAKER.EXE (NT), C-338

X
XOR, B-236
XOR_MASK, B-242

Z
Zoom, A-48, A-55, A-62

